Biskaborn, B. K., and Coauthors, 2019: Permafrost is warming at a global scale. Nature Communications, 10, 264, https://doi.org/10.1038/s41467-018-08240-4.
Chang, Y., S. Lyu, S. Q. Luo, Z. G. Li, X. W. Fang, B. L. Chen, R. Q. Li, and S. Q. Chen, 2018: Estimation of permafrost on the Tibetan Plateau under current and future climate conditions using the CMIP5 data. International Journal of Climatology, 38, 5659−5676, https://doi.org/10.1002/joc.5770.
Fang, X. W., S. Q. Luo, and S. H. Lyu, 2019: Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960−2014. Theor. Appl. Climatol., 135, 169−181, https://doi.org/10.1007/s00704-017-2337-9.
Fang, X. W., S. Q. Luo, S. H. Lyu, C. Cheng, Z. G. Li, and S. B. Zhang, 2021: Numerical modeling of the responses of soil temperature and soil moisture to climate change over the Tibetan Plateau, 1961−2010. International Journal of Climatology, 41, 4134−4150, https://doi.org/10.1002/joc.7062.
Gao, Y. H., L. Cuo, and Y. X. Zhang, 2014: Changes in moisture flux over the Tibetan Plateau during 1979−2011 and possible mechanisms. J. Climate, 27, 1876−1893, https://doi.org/10.1175/JCLI-D-13-00321.1.
Gao, Y. H., X. Li, L. R. Leung, D. L. Chen, and J. W. Xu, 2015: Aridity changes in the Tibetan Plateau in a warming climate. Environmental Research Letters, 10, 034013, https://doi.org/10.1088/1748-9326/10/3/034013.
Kendall, M. G., and J. D. Gibbons, 1990: Rank Correlation Methods. 5th ed. Edward Arnold, 212pp.
Kurylyk, B. L., K. T. B. MacQuarrie, and J. M. McKenzie, 2014: Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools. Earth-Science Reviews, 138, 313−334, https://doi.org/10.1016/j.earscirev2014.06.006.
Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. Journal of Advances in Modeling Earth Systems, 3, M03001, https://doi.org/10.1029/2011MS00045.
Li, D. S., Z. Wen, Q. G. Cheng, A. G. Xing, M. L. Zhang, and A. Y. Li, 2019: Thermal dynamics of the permafrost active layer under increased precipitation at the Qinghai-Tibet Plateau. Journal of Mountain Science, 16, 309−322, https://doi.org/10.1007/s11629-018-5153-5.
Li, T., and Coauthors, 2014: Mapping near-surface air temperature, pressure, relative humidity and wind speed over Mainland China with high spatiotemporal resolution. Adv. Atmos. Sci., 31, 1127−1135, https://doi.org/10.1007/s00376-014-3190-8.
Liu, L., D. L. Luo, L. Wang, Y. D. Huang, and F. F. Chen, 2021: Dynamics of freezing/thawing indices and frozen ground from 1900 to 2017 in the upper Brahmaputra River Basin, Tibetan Plateau. Advances in Climate Change Research, 12, 6−17, https://doi.org/10.1016/j.accre.2020.10.003.
Luo, J. X., S. H. Lyu, X. W. Fang, and Y. G. Liu, 2021: Trends in the frozen ground temperature on the Tibetan Plateau simulated by RegCM4.7-CLM4.5. Theor. Appl. Climatol., 145, 891−901, https://doi.org/10.1007/s00704-021-03664-3.
Lupascu, M., J. M. Welker, U. Seibt, K. Maseyk, X. Xu, and C. I. Czimczik, 2014: High Arctic wetting reduces permafrost carbon feedbacks to climate warming. Nature Climate Change, 4, 51−55, https://doi.org/10.1038/nclimate2058.
Ma, Y. M., and Coauthors, 2020: A long-term (2005−2016) dataset of hourly integrated land-atmosphere interaction observations on the Tibetan Plateau. Earth System Science Data, 12, 2937−2957, https://doi.org/10.5194/essd-12-2937-2020.
Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245−259, https://doi.org/10.2307/1907187.
Meng, X., and Coauthors, 2018: Detecting hydrological consistency between soil moisture and precipitation and changes of soil moisture in summer over the Tibetan Plateau. Climate Dyn., 51, 4157−4168, https://doi.org/10.1007/s00382-017-3646-5.
Nelson, F. E., and S. I. Outcalt, 1987: A computational method for prediction and regionalization of permafrost. Arctic and Alpine Research, 19, 279−288, https://doi.org/10.2307/1551363.
Oleson, K., and Coauthors, 2013: Technical Description of version 4.5 of the Community Land Model (CLM). NCAR Technical Note, National Center for Atmospheric Research. Available from
Qin, Y. H., and Coauthors, 2016: Using ERA-Interim reanalysis dataset to assess the changes of ground surface freezing and thawing condition on the Qinghai-Tibet Plateau. Environmental Earth Sciences, 75, 826, https://doi.org/10.1007/s12665-016-5633-2.
Slater, A. G., and D. M. Lawrence, 2013: Diagnosing present and future permafrost from climate models. J. Climate, 26, 5608−5623, https://doi.org/10.1175/JCLI-D-12-00341.1.
Swenson, S. C., and D. M. Lawrence, 2012: A new fractional snow-covered area parameterization for the Community Land Model and its effect on the surface energy balance. J. Geophys. Res.: Atmos., 117, D21107, https://doi.org/10.1029/2012JD018178.
Wu, T. H., L. Zhao, R. Li, Q. X. Wang, C. W. Xie, and Q. Q. Pang, 2013: Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau. International Journal of Climatology, 33, 920−930, https://doi.org/10.1002/joc.3479.
Wu, T. H., Y. H. Qin, X. D. Wu, R. Li, D. F. Zou, and C. W. Xie, 2018: Spatiotemporal changes of freezing/thawing indices and their response to recent climate change on the Qinghai-Tibet Plateau from 1980 to 2013. Theor. Appl. Climatol., 132, 1187−1199, https://doi.org/10.1007/s00704-017-2157-y.
Xie, P. P., and A. Y. Xiong, 2011: A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses. J. Geophys. Res.: Atmos., 116, D21106, https://doi.org/10.1029/2011JD016118.
Xie, Z. P., Z. Y. Hu, H. L. Liu, G. H. Sun, Y. X. Yang, Y. Lin, and F. F. Huang, 2017: Evaluation of the surface energy exchange simulations of land surface model CLM4.5 in alpine meadow over the Qinghai-Xizang Plateau. Plateau Meteorology, 36, 1−12, https://doi.org/10.7522/j.issn.1000-0534.2016.00012. (in Chinese with English abstract
Yao, T. D., and Coauthors, 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2, 663−667, https://doi.org/10.1038/nclimate1580.
Yin, D. Q., and M. L. Roderick, 2020: A framework to quantify the inter-annual variation in near-surface air temperature due to change in precipitation in snow-free regions. Environmental Research Letters, 15, 114028, https://doi.org/10.1088/1748-9326/abbc94.
Zhang, G. F., Z. T. Nan, L. Zhao, Y. J. Liang, and G. D. Cheng, 2021: Qinghai-Tibet Plateau wetting reduces permafrost thermal responses to climate warming. Earth and Planetary Science Letters, 562, 116858, https://doi.org/10.1016/j.jpgl.2021.116858.
Zhao, L., and Coauthors, 2021: A synthesis dataset of permafrost thermal state for the Qinghai-Tibet (Xizang) Plateau, China. Earth System Science Data, 13, 4207−4218, https://doi.org/10.5194/essd-13-4207-2021.
Zhou, C. Y., P. Zhao, and J. M. Chen, 2019: The interdecadal change of summer water vapor over the Tibetan Plateau and associated mechanisms. J. Climate, 32, 4103−4119, https://doi.org/10.1175/JCLI-D-18-0364.1.