Alexander, M. A., D. J. Vimont, P. Chang, and J. D. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23(11), 2885−2901, https://doi.org/10.1175/2010JCLI3205.1.
An, S.-I., and J.-W. Kim, 2017: Role of nonlinear ocean dynamic response to wind on the asymmetrical transition of El Niño and La Niña. Geophys. Res. Lett., 44, 393−400, https://doi.org/10.1002/2016GL071971.
Barber, R., and F. P. Chavez, 1983: Biological consequences of El Niño. Science, 222, 1203−1210, https://doi.org/10.1126/science.222.4629.1203.
Barnard, P. L., and Coauthors, 2015: Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillation. Nature Geoscience, 8(10), 801−807, https://doi.org/10.1038/ngeo2539.
Blunden, J., and D. S. Arndt, 2016: State of the climate in 2015. Bull. Amer. Meteor. Soc., 97(8), Si−S275, https://doi.org/10.1175/2016BAMSStateoftheClimate.1.
Bond, N. A., M. F. Cronin, H. Freeland, and N. Mantua, 2015: Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett., 42, 3414−3420, https://doi.org/10.1002/2015GL063306.
Capotondi, A., and Coauthors, 2015: Understanding ENSO Diversity. Bull. Amer. Meteor. Soc., 96, 921−938, https://doi.org/10.1175/BAMS-D-13-00117.1.
Chaigneau, A., M. Le Texier, G. Eldin, C. Grados, and O. Pizarro, 2011: Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats. J. Geophys. Res., 116, C11025, https://doi.org/10.1029/2011JC007134.
Chen, L., T. Li, B. Wang, and L. Wang, 2017: Formation mechanism for 2015/16 super El Niño. Sci. Rep., 7, 2975, https://doi.org/10.1038/s41598-017-02926-3.
Chiang, J. C. H., and D. J. Vimont, 2004: Analogous pacific and Atlantic Meridional modes of tropical atmosphere–ocean variability. J. Climate, 17(21), 4143−4158, https://doi.org/10.1175/JCLI4953.1.
Di Lorenzo, E., and N. Mantua, 2016: Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nature Climate Change, 6, 1042−1047, https://doi.org/10.1038/nclimate3082.
Ding, R. Q., J. P. Li, Y.-H. Tseng, C. Sun, and F. Xie, 2017: Joint impact of North and South Pacific extratropical atmospheric variability on the onset of ENSO events. J. Geophys. Res., 122, 279−298, https://doi.org/10.1002/2016JD025502.
Echevin, V., M. Gévaudan, D. Espinoza-Morriberón, J. Tam, O. Aumont, D. Gutierrez, and F. Colas, 2020: Physical and biogeochemical impacts of RCP8.5 scenario in the Peru upwelling system. Biogeosciences, 17(12), 3317−3341, https://doi.org/10.5194/bg-17-3317-2020.
England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change, 4, 222−227, https://doi.org/10.1038/nclimate2106.
Espinoza-Morriberon, D., V. Echevin, F. Colas, J. Tam, J. Ledesma, L. Vásquez, and M. Graco, 2017: Impacts of El Niño events on the Peruvian upwelling system productivity. J. Geophys. Res., 122, 5423−5444, https://doi.org/10.1002/2016JC012439.
Garreaud, R. D., 2018: A plausible atmospheric trigger for the 2017 coastal El Niño. International Journal of Climatology, 38, e1296−e1302, https://doi.org/10.1002/joc.5426.
Glantz, M. H., 2001: Currents of Change: Impacts of El Niño and La Niña on Climate and Society. 2nd ed., Cambridge University Press, 368 pp.
Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res., 118, 6704−6716, https://doi.org/10.1002/2013JC009067.
Ham, Y. G., J. H. Kim, and J.-J. Luo, 2019: Deep learning for multi-year ENSO forecasts. Nature, 573, 568−572, https://doi.org/10.1038/s41586-019-1559-7.
Hardiman, S. C., and Coauthors, 2018: The asymmetric response of Yangtze River basin summer rainfall to El Niño/La Niña. Environmental Research Letters, 13, 024015, https://doi.org/10.1088/1748-9326/aaa172.
Hayashi, M., F.-F. Jin, and M. F. Stuecker, 2020: Dynamics for El Niño-La Niña asymmetry constrain equatorial-Pacific warming pattern. Nature Communications, 11, 4230, https://doi.org/10.1038/s41467-020-17983-y.
Hobday, A. J., and Coauthors, 2016: A hierarchical approach to defining marine heatwaves. Progress in Oceanography, 141, 227−238, https://doi.org/10.1016/j.pocean.2015.12.014.
Hu, S. N., and A. V. Fedorov, 2016: Exceptionally strong easterly wind burst stalling El Niño of 2014. Proceedings of the National Academy of Sciences of the United States of America, 113, 2005−2010,
Hu, S. N., and A. V. Fedorov, 2018: Cross-equatorial winds control El Niño diversity and change. Nature Climate Change, 8, 798−802, https://doi.org/10.1038/s41558-018-0248-0.
Hu, Z.-Z., B. H. Huang, J. S. Zhu, A. Kumar, and M. J. McPhaden, 2019: On the variety of coastal El Niño events. Climate Dyn., 52, 7537−7552, https://doi.org/10.1007/s00382-018-4290-4.
Iizumi, T., J.-J. Luo, A. J. Challinor, G. Sakurai, M. Yokozawa, H. Sakuma, M. E. Brown, and T. Yamagata, 2014: Impacts of El Niño Southern Oscillation on the global yields of major crops. Nature Communications, 5, 3712, https://doi.org/10.1038/ncomms4712.
Jones, T., and Coauthors, 2018: Massive mortality of a planktivorous seabird in response to a marine heatwave. Geophys. Res. Lett., 45, 3193−3202, https://doi.org/10.1002/2017GL076164.
Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631−1644, https://doi.org/10.1175/BAMS-83-11-1631.
Klein, S., A. Hall, J. R. Norris, and R. Pincus, 2017: Low-cloud feedbacks from cloud-controlling factors: A review. Surveys in Geophysics, 38, 1307−1329, https://doi.org/10.1007/s10712-017-9433-3.
Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5−48, https://doi.org/10.2151/jmsj.2015-001.
Kumar, B. P., J. Vialard, M. Lengaigne, V. S. N. Murty, and M. J. McPhaden, 2012: TropFlux: Air-sea fluxes for the global tropical oceans-description and evaluation. Climate Dyn., 38, 1521−1543, https://doi.org/10.1007/s00382-011-1115-0.
L’Heureux, M. L., and Coauthors, 2017: Observing and predicting the 2015/16 El Niño. Bull. Amer. Meteor. Soc., 98, 1363−1382, https://doi.org/10.1175/BAMS-D-16-0009.1.
Luo, J.-J., S. Masson, S. Behera, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2003: South Pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM. Geophys. Res. Lett., 30(24), 2250, https://doi.org/10.1029/2003GL018649.
Luo, J.-J., S. Masson, S. Behera, S. Shingu, and T. Yamagata, 2005a: Seasonal climate predictability in a Coupled OAGCM using a different approach for ensemble forecasts. J. Climate, 18(21), 4474−4497, https://doi.org/10.1175/JCLI3526.1.
Luo, J.-J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005b: Reducing climatology bias in an ocean-atmosphere CGCM with improved coupling physics. J. Climate, 18(13), 2344−2360, https://doi.org/10.1175/JCLI3404.1.
Luo, J.-J., S. Masson, S. K. Behera, and T. Yamagata, 2008: Extended ENSO predictions using a fully coupled ocean–atmosphere model. J. Climate, 21, 84−93, https://doi.org/10.1175/2007JCLI1412.1.
Luo, J.-J., W. Sasaki, and Y. Masumoto, 2012: Indian Ocean warming modulates Pacific climate change. Proceedings of the National Academy of Sciences of the United States of America, 109, 18 701−18 706,
Luo, J.-J., G. Q. Liu, H. Hendon, O. Alves, and T. Yamagata, 2017: Inter-basin sources for two-year predictability of the multi-year La Niña event in 2010−2012. Scientific Reports, 7, 2276,
Masson, S., and Coauthors, 2005: Impact of barrier layer on winter-spring variability of the southeastern Arabian Sea. Geophys. Res. Lett., 32, L07703, https://doi.org/10.1029/2004GL021980.
McPhaden, M. J., T. Lee, and D. McClurg, 2011: El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett., 38, L15709, https://doi.org/10.1029/2011GL048275.
Min, Q. Y., and R. H. Zhang, 2020: The contribution of boreal spring south pacific atmospheric variability to El Niño occurrence. J. Climate, 33(19), 8301−8313, https://doi.org/10.1175/JCLI-D-20-0122.1.
Min, Q. Y., J. Z. Su, R. H. Zhang, and X. Y. Rong, 2015: What hindered the El Niño pattern in 2014? Geophys. Res. Lett., 42, 6762−6770, https://doi.org/10.1002/2015GL064899.
Paek, H., J.-Y. Yu, and C. C. Qian, 2017: Why were the 2015/2016 and 1997/1998 extreme El Niños different. Geophys. Res. Lett., 44, 1848−1856, https://doi.org/10.1002/2016GL071515.
Peng, Q. H., S.-P. Xie, D. X. Wang, X.-T. Zheng, and H. Zhang, 2019: Coupled ocean-atmosphere dynamics of the 2017 extreme coastal El Niño. Nature Communications, 10(1), 298, https://doi.org/10.1038/s41467-018-08258-8.
Piatt, J. F., and Coauthors, 2020: Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014−2016. PLoS One, 15(1), e0226087,
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108(D14), 4407, https://doi.org/10.1029/2002JD002670.
Ren, H.-L., R. Wang, P. M. Zhai, Y. H. Ding, and B. Lu, 2017: Upper-ocean dynamical features and prediction of the super El Niño in 2015/16: A comparison with the cases in 1982/83 and 1997/98. Journal of Meteorological Research, 31(2), 278−294,
Saha, S., and Coauthors, 2006: The NCEP climate forecast system. J. Climate, 19(15), 3483−3517, https://doi.org/10.1175/JCLI3812.1.
Sanabria, J., L. Bourrel, B. Dewitte, F. Frappart, P. Rau, O. Solis, and D. Labat, 2018: Rainfall along the coast of Peru during strong El Niño events. International Journal of Climatology, 38(4), 1737−1747, https://doi.org/10.1002/joc.5292.
Santoso, A., M. J. McPhaden, and W. J. Cai, 2017: The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys., 55, 1079−1129, https://doi.org/10.1002/2017RG000560.
Su, J. Z., B. Q. Xiang, B. Wang, and T. Li, 2014: Abrupt termination of the 2012 Pacific warming and its implication on ENSO prediction. Geophys. Res. Lett., 41, 9058−9064, https://doi.org/10.1002/2014GL062380.
Su, J. Z., R. H. Zhang, X. Y. Rong, Q. Y. Min, and C. W. Zhu, 2018: Sea surface temperature in the subtropical pacific boosted the 2015 El Niño and hindered the 2016 La Niña. J. Climate, 31, 877−893, https://doi.org/10.1175/JCLI-D-17-0379.1.
Takahashi, K., 2004: The atmospheric circulation associated with extreme rainfall events in Piura, Peru, during the 1997-1998 and 2002 El Niño events. Annales Geophysicae, 22(11), 3917−3926, https://doi.org/10.5194/angeo-22-3917-2004.
Valcke, S., L. Terray, and A. Piacentini, 2000: The OASIS coupler user guide version 2.4. Tech. Rep. TR/CMGC/00-10, 85 pp.
Wang, S.-Y., L. Hipps, R. R. Gillies, and J.-H. Yoon, 2014: Probable causes of the abnormal ridge accompanying the 2013-2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophys. Res. Lett., 41, 3220−3226, https://doi.org/10.1002/2014GL059748.
Wu, Y.-K., L. Chen, C.-C. Hong, T. Li, C.-T. Chen, and L. Wang, 2018: Role of the meridional dipole of SSTA and associated cross-equatorial flow in the tropical eastern Pacific in terminating the 2014 El Niño development. Climate Dyn., 50(5−6), 1625−1638, https://doi.org/10.1007/s00382-017-3710-1.
Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-Year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78(11), 2539−2558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.
Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A, 46, 340−350, https://doi.org/10.3402/tellusa.v46i4.15484.
Xue, Y., and A. Kumar, 2017: Evolution of the 2015/16 El Niño and historical perspective since 1979. Science China Earth Sciences, 60(9), 1572−1588,
You, Y. J., and J. C. Furtado, 2017: The role of South Pacific atmospheric variability in the development of different types of ENSO. Geophys. Res. Lett., 44, 7438−7446, https://doi.org/10.1002/2017GL073475.
Young, A. H., K. R. Knapp, A. Inamdar, W. Hankins, and W. B. Rossow, 2018: The International Satellite Cloud Climatology Project H-Series climate data record product. Earth System Science Data, 10, 583−593, https://doi.org/10.5194/essd-10-583-2018.
Zhang, H. H., C. Deser, A. Clement, and R. Tomas, 2014: Equatorial signatures of the Pacific Meridional Modes: Dependence on mean climate state. Geophys. Res. Lett., 41, 568−574, https://doi.org/10.1002/2013GL058842.
Zheng, Y. L., Z. S. Chen, H. Wang, and Y. Du, 2019: Features of 2015/2016 extreme El Niño event and its evolution mechanisms. Journal of Tropical Oceanography, 38(4), 10−19, https://doi.org/10.11978/2018114. (in Chinese with English abstract
Zhong, W. X., W. J. Cai, X.-T. Zheng, and S. Yang, 2019: Unusual anomaly pattern of the 2015/2016 extreme El Niño induced by the 2014 warm condition. Geophys. Res. Lett., 46, 14 772−14 781,