Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125, 2662−2682, https://doi.org/10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2.
Briegel, L. M., and W. M. Frank, 1997: Large-scale influences on tropical cyclogenesis in the western North Pacific. Mon. Wea. Rev., 125, 1397−1413, https://doi.org/10.1175/1520-0493(1997)125<1397:LSIOTC>2.0.CO;2.
Carr III, L. E., and R. L. Elsberry, 1995: Monsoonal interactions leading to sudden tropical cyclone track changes. Mon. Wea. Rev., 123, 265−290, https://doi.org/10.1175/1520-0493(1995)123<0265:MILTST>2.0.CO;2.
Chu, J. H., C. R. Sampson, A. S. Levine, and E. Fukada, 2002: The Joint Typhoon Warning Center tropical cyclone best-tracks, 1945-2000. Rep. NRL/MR/7540-02-16, 22 pp. [Available online from http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/TC_bt_report.html]
Davis, C. A., and L. F. Bosart, 2004: The TT problem: Forecasting the tropical transition of cyclones. Bull. Amer. Meteor. Soc., 85, 1657−1662, https://doi.org/10.1175/BAMS-85-11-1657.
DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219−233, https://doi.org/10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2.
Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016−1022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.
Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmospheric Chemistry and Physics, 9, 5587−5646, https://doi.org/10.5194/ACP-9-5587-2009.
Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.
Fang, J., and F. Q. Zhang, 2010: Initial development and genesis of hurricane Dolly (2008). J. Atmos. Sci., 67, 655−672, https://doi.org/10.1175/2009JAS3115.1.
Fu, B., T. Li, M. S. Peng, and F. Z. Weng, 2007: Analysis of tropical cyclogenesis in the Western North Pacific for 2000 and 2001,. Wea. Forecasting, 22, 763−780, https://doi.org/10.1175/WAF1013.1.
Fudeyasu, H., and R. Yoshida, 2018: Western North Pacific tropical cyclone characteristics stratified by genesis environment. Mon. Wea. Rev., 146, 435−446, https://doi.org/10.1175/MWR-D-17-0110.1.
Galarneau, T. J. Jr., R. McTaggart-Cowan, L. F. Bosart, and C. A. Davis, 2015: Development of north Atlantic tropical disturbances near upper-level potential vorticity streamers. J. Atmos. Sci., 72, 572−597, https://doi.org/10.1175/JAS-D-14-0106.1.
Ge, X. Y., T. M. Li, and M. S. Peng, 2013: Tropical cyclone genesis efficiency: Mid-level versus bottom vortex. Journal of Tropical Meteorology, 19, 197−213, https://doi.org/10.16555/j.1006-8775.2013.03.001.
Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669−700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.
Guo, C. R., and Q. H. Zhang, 2012: A study of the role of mesoscale vortex merging in the genesis of Typhoon Durian (2001). Acta Meteorologica Sinica, 70, 1−14, https://doi.org/10.11676/qxxb2012.001. (in Chinese with English abstract
Harr, P. A., R. L. Elsberry, and J. C. L. Chan, 1996: Transformation of a large monsoon depression to a tropical storm during TCM-93,. Mon. Wea. Rev., 124, 2625−2643, https://doi.org/10.1175/1520-0493(1996)124<2625:TOALMD>2.0.CO;2.
Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 1209−1232, https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.
Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 2573−2586, https://doi.org/10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2.
Hodges, K. I., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123, 3458−3465, https://doi.org/10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2.
Hodges, K. I., 1999: Adaptive constraints for feature tracking. Mon. Wea. Rev., 127, 1362−1373, https://doi.org/10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2.
Hodges, K., A. Cobb, and P. L. Vidale, 2017: How well are tropical cyclones represented in reanalysis datasets. J. Climate, 30, 5243−5264, https://doi.org/10.1175/JCLI-D-16-0557.1.
Holland, G. J., 1995: Scale interaction in the western Pacific monsoon. Meteorol. Atmos. Phys., 56, 57−79, https://doi.org/10.1007/BF01022521.
Komaromi, W. A., 2013: An investigation of composite dropsonde profiles for developing and nondeveloping tropical waves during the 2010 PREDICT Field Campaign. J. Atmos. Sci., 70, 542−558, https://doi.org/10.1175/JAS-D-12-052.1.
Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 2030−2045, https://doi.org/10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.
Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123, 2791−2801, https://doi.org/10.1175/1520-0493(1995)123<2791:IITGHP>2.0.CO;2.
Lander, M. A., 1994: Description of a monsoon gyre and its effects on the tropical cyclones in the western North Pacific during August 1991,. Wea. Forecasting, 9, 640−654, https://doi.org/10.1175/1520-0434(1994)009<0640:DOAMGA>2.0.CO;2.
Lee, C.-S., K. K. W. Cheung, J. S. N. Hui, and R. L. Elsberry, 2008: Mesoscale features associated with tropical cyclone formations in the western North Pacific. Mon. Wea. Rev., 136, 2006−2022, https://doi.org/10.1175/2007MWR2267.1.
McDonald, N. R., 1998: The decay of cyclonic eddies by Rossby wave radiation. J. Fluid Mech., 361, 237−252, https://doi.org/10.1017/S0022112098008696.
Möller, J. D., and M. T. Montgomery, 2000: Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model. J. Atmos. Sci., 57, 3366−3387, https://doi.org/10.1175/1520-0469(2000)057<3366:TCEVPV>2.0.CO;2.
Montgomery, M. T., and J. Enagonio, 1998: Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model. J. Atmos. Sci., 55, 3176−3207, https://doi.org/10.1175/1520-0469(1998)055<3176:TCVCFV>2.0.CO;2.
Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355−386, https://doi.org/10.1175/JAS3604.1.
Peng, K., and J. Fang, 2021: Effect of the initial vortex vertical structure on early development of an axisymmetric tropical cyclone. J. Geophys. Res., 126, e2020JD033697, https://doi.org/10.1029/2020JD033697.
Pinto, J. G., N. Bellenbaum, M. K. Karremann, and P. M. Della-Marta, 2013: Serial clustering of extratropical cyclones over the North Atlantic and Europe under recent and future climate conditions. J. Geophys. Res., 118, 12 476−12 485,
Pinto, J. G., S. Ulbrich, T. Economou, D. B. Stephenson, M. K. Karremann, and L. C. Shaffrey, 2016: Robustness of serial clustering of extratropical cyclones to the choice of tracking method. Tellus A: Dynamic Meteorology and Oceanography, 68(1), 32204, https://doi.org/10.3402/tellusa.v68.32204.
Raymond, D. J., S. L. Sessions, and C. López Carrillo, 2011: Thermodynamics of tropical cyclogenesis in the northwest Pacific. J. Geophys. Res., 116, D18101, https://doi.org/10.1029/2011JD015624.
Raymond, D. J., S. Gjorgjievska, S. Sessions, and Ž. Fuchs, 2014: Tropical cyclogenesis and mid-level vorticity. Australian Meteorological and Oceanographic Journal, 64, 11−25, https://doi.org/10.22499/2.6401.003.
Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125, 1377−1396, https://doi.org/10.1175/1520-0493(1997)125<1377:SIDTFO>2.0.CO;2.
Ritchie, E. A., and G. J. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127, 2027−2043, https://doi.org/10.1175/1520-0493(1999)127<2027:LSPAWT>2.0.CO;2.
Simpson, J., E. Ritchie, G. J. Holland, J. Halverson, and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125, 2643−2661, https://doi.org/10.1175/1520-0493(1997)125<2643:MIITCG>2.0.CO;2.
Tory, K. J., M. T. Montgomery, and N. E. Davidson, 2006a: Prediction and diagnosis of tropical cyclone formation in an NWP system. Part I: The critical role of vortex enhancement in deep convection. J. Atmos. Sci., 63, 3077−3090, https://doi.org/10.1175/JAS3764.1.
Tory, K. J., M. T. Montgomery, N. E. Davidson, and J. D. Kepert, 2006b: Prediction and diagnosis of tropical cyclone formation in an NWP system. Part II: A diagnosis of tropical cyclone Chris formation. J. Atmos. Sci., 63, 3091−3113, https://doi.org/10.1175/JAS3765.1.
Ullrich, P. A., C. M. Zarzycki, E. E. McClenny, M. C. Pinheiro, A. M. Stansfield, and K. A. Reed, 2021: TempestExtremes v2.1: A community framework for feature detection, tracking, and analysis in large datasets. Geoscientific Model Development, 14, 5023−5048, https://doi.org/10.5194/gmd-14-5023-2021.
Wu, L. G., H. J. Zong, and J. Liang, 2013: Observational analysis of tropical cyclone formation associated with monsoon gyres. J. Atmos. Sci., 70, 1023−1034, https://doi.org/10.1175/JAS-D-12-0117.1.
Wu, S. L., and J. Fang, 2019: The evolution and role of midtropospheric cyclonic vortex in the formation of Super Typhoon Nepartak (2016). J. Geophys. Res., 124, 9277−9298, https://doi.org/10.1029/2019JD030631.
Yoshida, R., and H. Ishikawa, 2013: Environmental factors contributing to tropical cyclone genesis over the western North Pacific. Mon. Wea. Rev., 141, 451−467, https://doi.org/10.1175/MWR-D-11-00309.1.
Zawislak, J., and E. J. Zipser, 2014: A Multisatellite investigation of the convective properties of developing and nondeveloping tropical disturbances. Mon. Wea. Rev., 142, 4624−4645, https://doi.org/10.1175/MWR-D-14-00028.1.
Zhang, W. L., X. P. Cui, and J. X. Dong, 2010: The role of middle tropospheric mesoscale convective vortex in the genesis of typhoon Durian (2001)-Diagnostic analysis of simulated data. Chinese Journal of Atmospheric Sciences, 34, 45−57, https://doi.org/10.3878/j.issn.1006-9895.2010.01.05. (in Chinese with English abstract
Zhang, W. L., X. P. Cui, and J. X. Dong, 2021: Characteristics and mechanism of vertical coupling in the genesis of tropical cyclone Durian (2001). Science China Earth Sciences, 64, 440−457, https://doi.org/10.1007/s11430-019-9681-x.
Zhao, H. K., S. H. Chen, P. J. Klotzbach, and G. B. Raga, 2018: Impact of the extended boreal summer intraseasonal oscillation on western North Pacific tropical cloud cluster genesis productivity. J. Climate, 31, 9175−9191, https://doi.org/10.1175/JCLI-D-18-0113.1.
Zong, H. J., and L. G. Wu, 2015: Re-examination of tropical cyclone formation in monsoon troughs over the Western North Pacific. Adv. Atmos. Sci., 32, 924−934, https://doi.org/10.1007/s00376-014-4115-2.