Aizen, V.B., and Coauthors, 1995: Stable-isotope and trace element time series from Fedchenko glacier (Pamir) snow/firn cores. Journal of Glaciology, 55(190), 1−15.
AMAP, 2021: Arctic Climate Change Update 2021: Key Trends and Impacts. Arctic Monitoring and Assessment Programme (AMAP), Tromsø, Norwa.
AMAP, 2015: AMAP Assessment 2015: Black carbon and ozone as Arctic climate forcers. Arctic Monitoring and Assessment Programme (AMAP), Tromsø, Norwa.
Azam, M.F., and Coauthors, 2021: Glaciohydrology of the Himalaya-Karakoram. Science, https://doi.org/10.1126/science.abf3668
Berner, A., S. Sidla, Z. Galambos, C. Kruisz, R. Hitzenberger, H. M. ten Brink, and G. P. A. Kos, 1996: Modal character of atmospheric black carbon size distributions. J. Geophys. Res., 101(D14), 19 559−19 565, https://doi.org/10.1029/95jd03425.
Bertò, M., an dCoauthors, 2021: Variability of black carbon mass concentration in surface snow at Svalbard. Atmospheric Chemistry and Physics, https://doi.org/10.5194/acp-21-12479-2021
Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res., 118, 5380−5552, https://doi.org/10.1002/jgrd.50171.
Chen, W. Q., J. L. Ding, Z. Zhang, X. Wang, W. Pu, B. H. Liu, and X. Y. Cao, 2019: Black carbon in seasonal snow across northern of Xinjiang. China Environmental Science, 39(1), 83−91, https://doi.org/10.3969/j.issn.1000-6923.2019.01.009. (in Chinese with English abstract
Chen, X. T., S. C. Kang, J. H. Yang, and Z. M. Ji. 2021: Investigation of black carbon climate effects in the Arctic in winter and spring. Science of the Total Environment, 751, 142145, https://doi.org/10.1016/j.scitotenv.2020.142145.
Doherty, S. J., T. C. Grenfell, S. Forsström, D. L. Hegg, R. E. Brandt, and S. G. Warren, 2013: Observed vertical redistribution of black carbon and other insoluble light-absorbing particles in melting snow. J. Geophys. Res., 118(11), 5553−5569, https://doi.org/10.1002/jgrd.50235.
Dumont, M., and Coauthors, 2014: Contribution of light-absorbing impurities in snow to Greenland’s darkening since 2009. Nature Geoscience, 7, https://doi.org/10.1038/NGEO2180.
Di Mauro, B., F. Fava, L. Ferrero, R. Garzonio, G. Baccolo, B. Delmonte, R. Colombo, 2015: Mineral dust impact on snow radiative properties in the European Alps combing ground, UAV, and satellite observations. Journal of Geophysical Research: Atmospheres, 120, 6080−6097, https://doi.org/10.1002/2015JD023287.
Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch, 2007: Present-day climate forcing and response from black carbon in snow. J. Geophys. Res., 112, D11202, https://doi.org/10.1029/2006JD008003.
Gustafsson, Ö., and V. Ramanathan, 2016: Convergence on climate warming by black carbon aerosols. Proceedings of the National Academy of Sciences of the USA, https://doi.org/10.1073/pnas.1603570113
Hansen, J., and L. Nazarenko, 2004: Soot climate forcing via snow and ice albedos. Proceedings of the National Academy of Science of the USA, 101, 423−428, https://doi.org/10.1073/pnas.2237157100.
He, C., and Coauthors, 2015: Variation of the radiative properties during black carbin aging: theoretical and experimental intercomparison. Atmospheric Chemistry and Physics, 15, 11967−11980, https://doi.org/10.5194/acp-15-11967-2015.
He, C. L., M. G. Flanner, F. Chen, M. Barlage, K.-N. Liou, S. C. Kang, J. Ming, and Y. Qian, 2018c: Black carbon-induced snow albedo reduction over the Tibetan Plateau: Uncertainties from snow grain shape and aerosol-snow mixing state based on an updated SNICAR model. Atmospheric Chemistry and Physics, 18(15), 11 507−11 527, https://doi.org/10.5194/acp-18-11507-2018.
He, C. L., K.-N. Liou, and Y. Takano, 2018a: Resolving size distribution of black carbon internally mixed with snow: Impact on snow optical properties and albedo. Geophys. Res. Lett., 45(6), 2697−2705, https://doi.org/10.1002/2018GL077062.
He, C. L., K.-N. Liou, Y. Takano, P. Yang, L. Qi, and F. Chen, 2018b: Impact of grain shape and multiple black carbon internal mixing on snow albedo: Parameterization and radiative effect analysis. J. Geophys. Res., 123, 1253−1268, https://doi.org/10.1002/2017JD027752.
Huang, X.-F., and Coauthors, 2011: Black carbon measurements in the Pearl River Delta region of China. J. Geophys. Res., 116(D12), D12208, https://doi.org/10.1029/2010jd014933.
IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekci, R. Yu and B. Zhou (eds.)]. Cambridge University Press.
Kang, S. C., and Coauthors, 2019: Linking atmospheric pollution to cryospheric change in the Third Pole region: Current progress and future prospects. National Science Review, 6, 796−809, https://doi.org/10.1093/nsr/nwz031.
Kang, S. C., Y. L. Zhang, Y. Qian, and H. L. Wang, 2020: A review of black carbon in snow and ice and its impact on the cryosphere. Earth-Science Reviews, 210, 103346, https://doi.org/10.1016/j.earscirev.2020.103346.
Kang, S. C., and Coauthors, 2022: Black carbon and organic carbon dataset over the Third Pole. Earth System Science Data, 14, 683−707, https://doi.org/10.5194/essd-14-683-2022.
Khan, A. L., G. R. McMeeking, J. P. Schwarz, P. Xian, K. A. Welch, W. Berry Lyons, and D. M. McKnight, 2018: Near-surface refractory black carbon observations in the atmosphere and snow in the McMurdo dry valleys, Antarctica, and potential impacts of foehn winds. J. Geophys. Res., 123(5), 2877−2887, https://doi.org/10.1002/2017JD027696.
Khan, A. L., K. Rittger, P. Xian, J. M. Katich, R. L. Armstrong, R. B. Kayastha, J. L. Dana, and D. M. McKnight, 2020: Biofuel burning influences refractory black carbon concentrations in seasonal snow at lower elevations of the Dudh Koshi river basin of Nepal. Frontiers in Earth Science, 8, 371, https://doi.org/10.3389/feart.2020.00371.
Kinase, T., and Coauthors, 2020: Concentrations and size distributions of black carbon in the surface snow of eastern Antarctica in 2011. J. Geophys. Res., 125, e2019JD030737, https://doi.org/10.1029/2019jd030737.
Kondo, Y., and Coauthors, 2011: Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008. J. Geophys. Res., 116, D08204, https://doi.org/10.1029/2010JD015152.
Kozlov, V. S., M. V. Panchenko, D. G. Chernov, V. P. Shmargunov, E. P. Yausheva, 2017: Annual dynamics of the black carbon size distribution in the near-ground submicron aerosol in western Siberia. Proc SPIE 10466, 23rd International Symposium on Atmospheric and Ocean Optics, Irkutsk, Russian Federation, SPIE, https://doi.org/10.1117/12.2284463.
Krasowsky, T. S., G. R. McMeeking, C. Sioutas, and G. Ban-Weiss, 2018: Characterizing the evolution of physical properties and mixing state of black carbon particles: From near a major highway to the broader urban plume in Los Angeles. Atmospheric Chemistry and Physics, 18(16), 11 991−12 010, https://doi.org/10.5194/acp-18-11991-2018.
Li, C. L., and Coauthors, 2016: Sources of black carbon to the Himalayan-Tibetan Plateau glaciers. Nature Communications, 7, 12574, https://doi.org/10.1038/ncomms12574.
Li, X. F., and Coauthors, 2018: Light-absorbing impurities in a southern Tibetan Plateau glacier: Variations and potential impact on snow albedo and radiative forcing. Atmospheric Research, 200, 77−87, https://doi.org/10.1016/j.atmosres.2017.10.002.
Li, Y., and Coauthors, 2021: Black carbon and dust in the Third Pole glaciers: Revaluated concentrations, mass absorption cross-sections and contributions to glacier ablation. Science of the Total Environment, 789, 147746, https://doi.org/10.1016/j.scitotenv.2021.147746.
Lim, S., X. Faïn, M. Zanatta, J. Cozic, J.-L. Jaffrezo, P. Ginot, and P. Laj, 2014: Refractory black carbon mass concentrations in snow and ice: Method evaluation and inter-comparison with elemental carbon measurement. Atmospheric Measurement Techniques, 7, 3307−3324, https://doi.org/10.5194/amt-7-3307-2014.
Marquetto, L., S. Kaspari, and J. C. Simões, 2020: Mass and number size distributions of rBC in snow and firn samples from Pine Island Glacier, West Antarctica. Earth and Space Science, 7(11), e2020EA001198, https://doi.org/10.1029/2020ea001198.
Ménégoz, M., G., and Coauthors, 2014: Snow cover sensitivity to black carbon deposition in the Himalayas: from atmospheric and ice core measurements to regional climate simulations. Atmospheric Chemistry and Physics, 14, 4237−4249, https://doi.org/10.5194/acp-14-4237-2014.
Mori, T., and Coauthors, 2019: Black carbon and inorganic aerosols in Arctic snowpack. Journal of Geophysical Research: Atmospheres, 124, 13,325−13,356, https://doi.org/10.1029/2019JD030623.
Moteki, N., Y. Kondo, and S.-I. Nakamura, 2010: Method to measure refractive indices of small nonspherical particles: Application to black carbon particles. Journal of Aerosol Science, 41, 513−521, https://doi.org/10.1016/j.jaerosci.2010.02.013.
Moteki, N., and Y. Kondo, 2010: Effects of Mixing State on Black Carbon Measurements by Laser-Induced Incandescence. Aerosol Science and Technology, 41, 398−417, https://doi.org/10.1080/02786820701199728.
Moteki, N., Y. Kondo, N. Oshima, N. Takegawa, M. Koike, K. Kita, H. Matsui, and M. Kajino, 2012: Size dependence of wet removal of black carbon aerosols during transport from the boundary layer to the free troposphere. Geophyical Research Letters, 39, L13802, https://doi.org/10.1029/2012GL052034.
Motos, G., J. C. Corbin, J. Schmale, R. L. Modini, M. Bertò, P. Kupiszewski, U. Baltensperger, and M. Gysel‐Beer, 2020: Black carbon aerosols in the lower free troposphere are heavily coated in summer but largely uncoated in winter at Jungfraujoch in the Swiss Alps. Geophys. Res. Lett., 47, e2020GL088011, https://doi.org/10.1029/2020gl088011.
Nie, Y., and Coauthors, 2021: Glacial change and hydrological implications in the Himalaya and Karakoram. Nature Reviews Earth and Environment, https://doi.org/10.1038/s43017-020-00124-w
Niu, H. W., and Coauthors, 2017: Distribution of light-absorbing impurities in snow of glacier on Mt. Yulong, southeastern Tibetan Plateau. Atmospheric Research, 197, 474−484, https://doi.org/10.1016/j.atmosres.2017.07.004.
Ohata, S., N. Moteki, J. Schwarz , D. Fahey, and Y. Kondo, 2013: Evaluation of a Method to Measure Black Carbon Particles Suspended in Rainwater and Snow Samples. Aerosol Science and Technology, 47, 1073−1082, https://doi.org/10.1080/02786826.2013.824067.
Ohata, S., N. Moteki, T. Mori, M. Koike, and Y. Kondo, 2016: A key process controlling the wet removal of aerosols: new observational evidence. Nature Scientific Reports, 6, 34113, https://doi.org/10.1038/srep34113.
Pu, W., X. Wang, H. L. Wei, Y. Zhou, J. S. Shi, Z. Y. Hu, H. C. Jin, and Q. L. Chen, 2017: Properties of black carbon and other insoluble light-absorbing particles in seasonal snow of northwestern China. The Cryosphere, 11(3), 1213−1233, https://doi.org/10.5194/tc-11-1213-2017.
Raatikainen, T., D. Brus, A.-P. Hyvärinen, J. Svensson, E. Asmi, and H. Lihavainen, 2015: Black carbon concentrations and mixing state in the Finnish Arctic. Atmospheric Chemistry and Physics, 15(17), 10 057−10 070, https://doi.org/10.5194/acp-15-10057-2015.
Ramanathan, V. and G. Carmichael, 2008: Global and regional climate changes due to black carbon. Nature Geoscience, 1, 221−227, https://doi.org/10.1038/ngeo156.
Schmale, J., and Coauthors, 2017: Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon. Scientific Report, 7, 40501, https://doi.org/10.1038/srep40501.
Schulz, H., and Coauthors, 2019: High Arctic aircraft measurements characterising black carbon vertical variability in spring and summer. Atmospheric Chemistry and Physics, 19(4), 2361−2384, https://doi.org/10.5194/acp-19-2361-2019.
Schwarz, J.P., and Coauthors, 2008: Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions. Geophysical Research Letters, 36, L13810, https://doi.org/10.1029/2008GL033968.
Schwarz, J. P., S. J. Doherty, F. Li, S. T. Ruggiero, C. E. Tanner, A. E. Perring, R. S. Go, and D. W. Fahey, 2012: Assessing Single Particle Soot Photometer and Integrating Sphere/Integrating Sandwich Spectrophotometer measurement techniques for quantifying black carbon concentration in snow. Atmospheric Measurement Techniques, 5, 2581−2592, https://doi.org/10.5194/amt-5-2581-2012.
Schwarz, J. P., R. S. Gao, A. E. Perring, J. R. Spackman, and D. W. Fahey, 2013: Black carbon aerosol size in snow. Scientific Reports, 3, 1356, https://doi.org/10.1038/srep01356.
Sinha, P. R., and Coauthors, 2018: Seasonal progression of the deposition of black carbon by snowfall at Ny-Ålesund, Spitsbergen. Journal of Geophysical Research: Atmospheres, 123, 997−1016, https://doi.org/10.1002/2017JD028027.
Shindell, D., and Coauthors, 2012: Simultaneously mitigating near-term climate change and improving human health and food security. Science, 335, 183−189, https://doi.org/10.1126/science.1210026.
Skiles, S.M., M. Flanner, J.M. Cook, M. Dumont, and T.H. Painter, 2018: Radiative forcing by light-absorbing particles in snow. Nature Climate Change, 8, 964−917, https://doi.org/10.1038/s41558-018-0296-5.
Sprenger, M., and H. Wernli, 2015: The LAGRANTO Lagrangian analysis tool-version 2.0. Geoscientific Model Development, 8, 2569−2586, https://doi.org/10.5194/gmd-8-2569-2015.
Sun, T. L., L. Y. He, L. W. Zeng, and X. F. Huang, 2012: Black carbon measurement during Beijing Paralympic Games. China Environmental Science, 32, 2123−2127, https://doi.org/10.3969/j.issn.1000-6923.2012.12.002. (in Chinese with English abstract
Thamban, N. M., S. N. Tripathi, S. P. Moosakutty, P. Kuntamukkala, and V. P. Kanawade, 2017: Internally mixed black carbon in the Indo-Gangetic Plain and its effect on absorption enhancement. Atmospheric Research, 197, 211−223, https://doi.org/10.1016/j.atmosres.2017.07.007.
Wang, M., B. Q. Xu, H. L. Wang, R. D. Zhang, Y. Yang, S. P. Gao, X. X. Tang, and N. L. Wang, 2021: Black carbon deposited in Hariqin Glacier of the Central Tibetan Plateau record changes in the emission from Eurasia. Environmental Pollution, 273, 115778, https://doi.org/10.1016/j.envpol.2020.115778.
Wang, Q. Y., and Coauthors, 2014: Black carbon aerosol characterization in a remote area of Qinghai-Tibetan Plateau, western China. Science of the Total Environment, 479−480, 151−158, https://doi.org/10.1016/j.scitotenv.2014.01.098.
Wang, Q. Y., and Coauthors, 2016a: Size distribution and mixing state of refractory black carbon aerosol from a coastal city in South China. Atmospheric Research, 181, 163−171, https://doi.org/10.1016/j.atmosres.2016.06.022.
Wang, Q. Y., and Coauthors, 2016b: Physicochemical characteristics of black carbon aerosol and its radiative impact in a polluted urban area of China. J. Geophys. Res., 121, 12 505−12 519, https://doi.org/10.1002/2016JD024748.
Wang, Q. Y., and Coauthors, 2018: Sources and physicochemical characteristics of black carbon aerosol from the southeastern Tibetan Plateau: Internal mixing enhances light absorption. Atmospheric Chemistry and Physics, 18(7), 4639−4656, https://doi.org/10.5194/acp-18-4639-2018.
Wang, X., S. Doherty, J. Huang, 2013: Black carbon and other light-absorbing impurities in snow across Northern China. Journal of Geophysical Research: Atmosphere, 118, 1471−1492, https://doi.org/10.1029/2012JD018291.
Wang, X., T. L. Shi, X. Y. Zhang, and Y. Chen, 2020: An overview of snow albedo sensitivity to black carbon contamination and snow grain properties based on experimental datasets across the northern hemisphere. Current Pollution Reports, 6, 368−379, https://doi.org/10.1007/s40726-020-00157-1.
Ward, T. J., B. Trost, J. Conner, J. Flanagan, and R. K. M. Jayanty, 2012: PM2.5 source Apportionment in a Subarctic Airshed – Fairbanks, Alaska. Aerosol Air Quality Research, 12, 536−543, https://doi.org/10.4209/aaqr.2011.11.0208.
Warren, S. G., and W. J. Wiscombe, 1980: A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. Journal of Atmospheric Science, 37, 2734−2745, https://doi.org/10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2.
Wernli, H., and H. C. Davies, 1997: A Lagrangian-based analysis of extratropical cyclones. I: the method and some applications. Quart. J. Roy. Meteor. Soc., 123, 467−489.
Wiedinmyer, C., and Coauthors, 2011: The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625−641, https://doi.org/10.5194/gmd-4-625-2011.
Wu, Y. F., and Coauthors, 2017: Size distribution and source of black carbon aerosol in urban Beijing during winter haze episodes. Atmospheric Chemistry and Physics, 17(12), 7965−7975, https://doi.org/10.5194/acp-17-7965-2017.
Xu, B., and Coauthors, 2009: Black soot and the survival of Tibetan glaciers. Proceedings of the National Academy of Sciences of the USA, 106(52), 22114−22118, https://doi.org/10.1073/pnas.0910444106.
Yao, T. D., and Coauthors, 2012a: Third pole environment (TPE). Environmental Development, 3, 52−64, https://doi.org/10.1016/j.envdev.2012.04.002.
Yao, X. J., S. Y. Liu, W. Q. Guo, B. J. Huai, M. P. Sun, and J. L. Xu, 2012b: Glacier change of Altay Mountain in China from 1960 to 2009-Based on the second glacier inventory of China. Journal of Natural Resources, 27(10), 1734−1745. (in Chinese with English abstract)
Zhang, Y. L., and Coauthors, 2017a: Light-absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan Plateau. J. Geophys. Res., 122, 6915−6933, https://doi.org/10.1002/2016JD026397.
Zhang, Y. L., and Coauthors, 2017b: Characteristics of black carbon in snow from Laohugou No. 12 glacier on the northern Tibetan Plateau. Science of the Total Environment, 607−608, 1237−1249, https://doi.org/10.1016/j.scitotenv.2017.07.100.
Zhang, Y. L., and Coauthors, 2019: Dissolved organic carbon in snow cover of the Chinese Altai Mountains, Central Asia: Concentrations, sources and light-absorption properties. Science of the Total Environment, 647, 1385−1397, https://doi.org/10.1016/j.scitotenv.2018.07.417.
Zhang, Y. L., and Coauthors, 2020a: Effects of black carbon and mineral dust on glacial melting on the Muz Taw glacier, Central Asia. Science of the Total Environment, 740, 140056, https://doi.org/10.1016/j.scitotenv.2020.140056.
Zhang, Y. L., and Coauthors, 2020b: Dissolved organic carbon in Alaskan Arctic snow: Concentrations, light-absorption properties, and bioavailability. Tellus B, 72, 1778968, https://doi.org/10.1080/16000889.2020.1778968.
Zhang, Y., T. Gao, S. Kang, D. Shangguan, X. Luo, 2021: Albedo reduction as an important driver for glacier melting in Tibetan Plateau and its surrounding areas. Earth-Science Reviews, 220, 103735, https://doi.org/10.1016/j.earscirev.2021.103735.
Zhao, D. L., J. J. Sheng, Y. M. Du, W. Zhou, F. Wang, W. Xiao, and D. P. Ding, 2021: Concentration and physical characteristics of black carbon in winter snow of Beijing in 2015. Atmosphere, 12(7), 816, https://doi.org/10.3390/atmos12070816.
Zhong, X. Y., S. C. Kang, W. Zhang, J. H. Yang, X. F. Li, Y. L. Zhang, Y. J. Liu, and P. F. Chen, 2019: Light-absorbing impurities in snow cover across Northern Xinjiang, China. J. Glaciol., 65, 940−956, https://doi.org/10.1017/jog.2019.69.
Zhong, X. Y., and Coauthors, 2021: Continuously observed light absorbing impurities in snow cover over the southern Altai Mts. in China: Concentrations, impacts and potential sources. Environmental Pollution, 270, 116234, https://doi.org/10.1016/j.envpol.2020.116234.