Brown, R. D., and P. W. Mote, 2009: The response of northern hemisphere snow cover to a changing climate. J. Climate, 22, 2124−2145, https://doi.org/10.1175/2008JCLI2665.1.
Cai, D. L., Q. L. You, K. Fraedrich, and Y. N. Guan, 2017: Spatiotemporal temperature variability over the Tibetan Plateau: Altitudinal dependence associated with the Global warming hiatus. J. Climate, 30, 969−984, https://doi.org/10.1175/JCLI-D-16-0343.1.
Duan, A. M., G. X. Wu, Y. M. Liu, Y. M. Ma, and P. Zhao, 2012: Weather and climate effects of the Tibetan Plateau. Adv. Atmos. Sci., 29(5), 978−992, https://doi.org/10.1007/s00376-012-1220-y.
Fu, Y.-H., R.-Y. Lu, and D. Guo, 2018: Changes in surface air temperature over China under the 1.5°C and 2.0°C global warming targets. Advances in Climate Change Research, 9, 112−119, https://doi.org/10.1016/j.accre.2017.12.001.
Fu, Y.-H., X.-J. Gao, Y.-M. Zhu, and D. Guo, 2021: Climate change projection over the Tibetan Plateau based on a set of RCM simulations. Advances in Climate Change Research, 12, 313−321, https://doi.org/10.1016/j.accre.2021.01.004.
Gao, Y. H., F. Chen, D. P. Lettenmaier, J. W. Xu, L. H. Xiao, and X. Li, 2018: Does elevation-dependent warming hold true above 5000 m elevation? Lessons from the Tibetan Plateau npj Climate and Atmospheric Science, 1, 19, https://doi.org/10.1038/s41612-018-0030-z.
Ghatak, D., E. Sinsky, and J. Miller, 2014: Role of snow-albedo feedback in higher elevation warming over the Himalayas, Tibetan Plateau and Central Asia. Environmental Research Letters, 9, 114008, https://doi.org/10.1088/1748-9326/9/11/114008.
Guo, D. L., J. Q. Sun, K. Yang, N. Pepin, and Y. M. Xu, 2019: Revisiting recent elevation-dependent warming on the Tibetan Plateau using satellite-based data sets. J. Geophys. Res., 124, 8511−8521, https://doi.org/10.1029/2019JD030666.
Guo, D. L., N. Pepin, K. Yang, J. Q. Sun, and D. Li, 2021: Local changes in snow depth dominate the evolving pattern of elevation-dependent warming on the Tibetan Plateau. Science Bulletin, 66, 1146−1150, https://doi.org/10.1016/j.scib.2021.02.013.
Ji, P., X. Yuan, and D. Li, 2020: Atmospheric radiative processes accelerate ground surface warming over the southeastern Tibetan Plateau during 1998–2013. J. Climate, 33, 1881−1895, https://doi.org/10.1175/JCLI-D-19-0410.1.
Kang, S. C., Y. W. Xu, Q. L. You, W.-A. Flügel, N. Pepin, and T. D. Yao, 2010: Review of climate and cryospheric change in the Tibetan Plateau. Environmental Research Letters, 5, 015101, https://doi.org/10.1088/1748-9326/5/1/015101.
Kay, J. E., and Coauthors, 2015: The community earth system model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 1333−1349, https://doi.org/10.1175/BAMS-D-13-00255.1.
Li, B. F., Y. N. Chen, and X. Shi, 2020: Does elevation dependent warming exist in high mountain Asia. Environmental Research Letters, 15, 024012, https://doi.org/10.1088/1748-9326/ab6d7f.
Lu, J. H., and M. Cai, 2009: Seasonality of polar surface warming amplification in climate simulations. Geophys. Res. Lett., 36, L16704, https://doi.org/10.1029/2009GL040133.
Lun, Y. R., L. Liu, L. Cheng, X. P. Li, H. Li, and Z. X. Xu, 2021: Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau. International Journal of Climatology, 41, 3994−4018, https://doi.org/10.1002/joc.7055.
Niu, X. R., J. P. Tang, D. L. Chen, S. Y. Wang, and T. H. Ou, 2021: Elevation-dependent warming over the Tibetan Plateau from an ensemble of CORDEX-EA regional climate simulations. J. Geophys. Res., 126, e2020JD033997, https://doi.org/10.1029/2020JD033997.
Qin, J., K. Yang, S. L. Liang, and X. F. Guo, 2009: The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change, 97, 321−327, https://doi.org/10.1007/s10584-009-9733-9.
Sanderson, B. M., and Coauthors, 2017: Community climate simulations to assess avoided impacts in 1.5°C and 2°C futures. Earth System Dynamics, 8, 827−847, https://doi.org/10.5194/esd-8-827-2017.
Sanderson, B. M., K. W. Oleson, W. G. Strand, F. Lehner, and B. C. O'Neill, 2018: A new ensemble of GCM simulations to assess avoided impacts in a climate mitigation scenario. Climatic Change, 146, 303−318, https://doi.org/10.1007/s10584-015-1567-z.
Shen, L. C., Y. Q. Zhang, S. Ullah, N. Pepin, and Q. R. Ma, 2021: Changes in snow depth under elevation-dependent warming over the Tibetan Plateau. Atmospheric Science Letters, 22, e1041, https://doi.org/10.1002/asl.1041.
Shi, C., Z.-H. Jiang, L.-H. Zhu, X. B. Zhang, Y.-Y. Yao, and L. Li, 2020: Risks of temperature extremes over China under 1.5°C and 2°C global warming. Advances in Climate Change Research, 11, 172−184, https://doi.org/10.1016/j.accre.2020.09.006.
Tebaldi, C., and Coauthors, 2021: Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth System Dynamics, 12, 253−293, https://doi.org/10.5194/esd-12-253-2021.
UNFCCC, 2015: Adoption of the Paris Agreement. Proposal by the President. Report No. Proposal by the President. FCCC/CP/2015/L.9/Rev.1. [Available online from https://unfccc.int/sites/default/files/resource/docs/2015/cop21/eng/l09r01.pdf].
Wang, T., Y. T. Zhao, C. Y. Xu, P. Ciais, D. Liu, H. Yang, S. L. Piao, and T. D. Yao, 2021: Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets. Nature Climate Change, 11, 219−225, https://doi.org/10.1038/s41558-020-00974-8.
Wei, Y., H. P. Yu, J. P. Huang, T. J. Zhou, M. Zhang, and Y. Ren, 2019: Drylands climate response to transient and stabilized 2°C and 1.5°C global warming targets. Climate Dyn., 53, 2375−2389, https://doi.org/10.1007/s00382-019-04860-8.
Wu, F. Y., Q. L. You, W. X. Xie, and L. Zhang, 2019: Temperature change on the Tibetan Plateau under the global warming of 1.5°C and 2°C. Climate Change Research, 15(2), 130−139, https://doi.org/10.12006/j.issn.1673-1719.2018.175. (in Chinese with English abstract
Yao, T. D., and Coauthors, 2012: Third pole environment (TPE). Environmental Development, 3, 52−64, https://doi.org/10.1016/j.envdev.2012.04.002.
Yao, T. D., and Coauthors, 2019: Recent third pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis. Bull. Amer. Meteor. Soc., 100, 423−444, https://doi.org/10.1175/BAMS-D-17-0057.1.
You, Q. L., S. C. Kang, N. Pepin, W.-A. Flügel, Y. P. Yan, H. Behrawan, and J. Huang, 2010: Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Global and Planetary Change, 71, 124−133, https://doi.org/10.1016/j.gloplacha.2010.01.020.
You, Q. L., J. Z. Min, and S. C. Kang, 2016: Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades. International Journal of Climatology, 36, 2660−2670, https://doi.org/10.1002/joc.4520.
You, Q. L., Y. Q. Zhang, X. Y. Xie, and F. Y. Wu, 2019: Robust elevation dependency warming over the Tibetan Plateau under global warming of 1.5°C and 2°C. Climate Dyn., 53, 2047−2060, https://doi.org/10.1007/s00382-019-04775-4.
You, Q. L., F. Y. Wu, L. C. Shen, N. Pepin, Z. H. Jiang, and S. C. Kang, 2020a: Tibetan Plateau amplification of climate extremes under global warming of 1.5°C, 2°C and 3°C. Global and Planetary Change, 192, 103261, https://doi.org/10.1016/j.gloplacha.2020.103261.
You, Q. L., and Coauthors, 2020b: Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives. Earth-Science Reviews, 210, 103349, https://doi.org/10.1016/j.earscirev.2020.103349.
You, Q. L., and Coauthors, 2021: Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences. Earth-Science Reviews, 217, 103625, https://doi.org/10.1016/j.earscirev.2021.103625.
Zhang, H. B., W. W. Immerzeel, F. Zhang, R. J. De Kok, D. L. Chen, and W. Yan, 2022: Snow cover persistence reverses the altitudinal patterns of warming above and below 5000 m on the Tibetan Plateau. Science of the Total Environment, 803, 149889, https://doi.org/10.1016/j.scitotenv.2021.149889.
Zhang, J. T., and F. Wang, 2019: Changes in the risk of extreme climate events over East Asia at different global warming levels. Water, 11, 2535, https://doi.org/10.3390/w11122535.
Zhang, W. X., and T. J. Zhou, 2021: The effect of modeling strategies on assessments of differential warming impacts of 0.5°C. Earth’s Future, 9, e2020EF001640, https://doi.org/10.1029/2020EF001640.
Zhang, Z. X., J. Chang, C.-Y. Xu, Y. Zhou, Y. H. Wu, X. Chen, S. S. Jiang, and Z. Duan, 2018: The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30 years. Science of the Total Environment, 635, 443−451, https://doi.org/10.1016/j.scitotenv.2018.04.113.