Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303−309, https://doi.org/10.1038/nature04141.
Boos, W. R., and Z. M. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218−222, https://doi.org/10.1038/nature08707.
Boos, W. R., and Z. M. Kuang, 2013: Sensitivity of the South Asian monsoon to elevated and non-elevated heating. Scientific Reports, 3, 1192, https://doi.org/10.1038/srep01192.
Burbank, D. W., B. Bookhagen, E. J. Gabet, and J. Putkonen, 2012: Modern climate and erosion in the Himalaya. Comptes Rendus Geoscience, 344, 610−626, https://doi.org/10.1016/j.crte.2012.10.010.
Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn state–NCAR Mm5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569−585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
Duan, A. M., and G. X. Wu, 2005: Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dyn., 24, 793−807, https://doi.org/10.1007/s00382-004-0488-8.
Feng, L., and T. J. Zhou, 2012: Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis. J. Geophys. Res., 117, D20114, https://doi.org/10.1029/2011JD017012.
Gao, Y. H., L. Cuo, and Y. X. Zhang, 2014: Changes in moisture flux over the Tibetan Plateau during 1979−2011 and possible mechanisms. J. Climate, 27, 1876−1893, https://doi.org/10.1175/JCLI-D-13-00321.1.
Gao, Y. H., J. W. Xu, and D. L. Chen, 2015: Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979−2011. J. Climate, 28, 2823−2841, https://doi.org/10.1175/JCLI-D-14-00300.1.
Gu, H. H., Z. B. Yu, W. R. Peltier, and X. Y. Wang, 2020: Sensitivity studies and comprehensive evaluation of RegCM4.6.1 high-resolution climate simulations over the Tibetan Plateau. Climate Dyn., 54, 3781−3801, https://doi.org/10.1007/s00382-020-05205-6.
Hagos, S., L. R. Leung, Q. Yang, C. Zhao, and J. Lu, 2015: Resolution and dynamical core dependence of atmospheric river frequency in global model simulations. J. Climate, 28, 2764−2776, https://doi.org/10.1175/JCLI-D-14-00567.1.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Hong, S. Y., 2010: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 136, 1481−1496, https://doi.org/10.1002/qj.665.
Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society, 42, 129−151.
Iacono, M. J., E. J. Mlawer, S. A. Clough, and J.-J. Morcrette, 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. J. Geophys. Res., 105, 1 4873−1 4890,
Immerzeel, W. W., L. P. H. Van Beek, and M. F. P. Bierkens, 2010: Climate change will affect the Asian water towers. Science, 328, 1382−1385, https://doi.org/10.1126/science.1183188.
Judt, F., 2018: Insights into atmospheric predictability through global convection-permitting model simulations. J. Atmos. Sci., 75, 1477−1497, https://doi.org/10.1175/JAS-D-17-0343.1.
Karki, R., S. ul Hasson, L. Gerlitz, U. Schickhoff, T. Scholten, and J. Böhner, 2017: Quantifying the added value of convection-permitting climate simulations in complex terrain: A systematic evaluation of WRF over the Himalayas. Earth System Dynamics, 8, 507−528, https://doi.org/10.5194/esd-8-507-2017.
Klemp, J. B., 2011: A terrain-following coordinate with smoothed coordinate surfaces. Mon. Wea. Rev., 139, 2163−2169, https://doi.org/10.1175/MWR-D-10-05046.1.
Klemp, J. B., W. C. Skamarock, and J. Dudhia, 2007: Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Mon. Wea. Rev., 135, 2897−2913, https://doi.org/10.1175/MWR3440.1.
Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5−48, https://doi.org/10.2151/jmsj.2015-001.
Landu, K., L. R. Leung, S. Hagos, V. Vinoj, S. A. Rauscher, T. Ringler, and M. Taylor, 2014: The dependence of ITCZ structure on model resolution and dynamical core in aquaplanet simulations. J. Climate, 27, 2375−2385, https://doi.org/10.1175/JCLI-D-13-00269.1.
Li, P. X., K. Furtado, T. J. Zhou, H. M. Chen, and J. Li, 2021: Convection-permitting modelling improves simulated precipitation over the central and eastern Tibetan Plateau. Quart. J. Roy. Meteor. Soc., 147, 341−362, https://doi.org/10.1002/qj.3921.
Lin, C. G., D. L. Chen, K. Yang, and T. H. Ou, 2018: Impact of model resolution on simulating the water vapor transport through the central Himalayas: Implication for models’ wet bias over the Tibetan Plateau. Climate Dyn., 51, 3195−3207, https://doi.org/10.1007/s00382-018-4074-x.
Lutz, A. F., W. W. Immerzeel, A. B. Shrestha, and M. F. P. Bierkens, 2014: Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nature Climate Change, 4, 587−592, https://doi.org/10.1038/nclimate2237.
Ma, J. H., H. J. Wang, and K. Fan, 2015: Dynamic downscaling of summer precipitation prediction over China in 1998 using WRF and CCSM4. Adv. Atmos. Sci., 32, 577−584, https://doi.org/10.1007/s00376-014-4143-y.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663−1 6682,
O’Brien, T. A., F. Y. Li, W. D. Collins, S. A. Rauscher, T. D. Ringler, M. Taylor, S. M. Hagos, and L. R. Leung, 2013: Observed scaling in clouds and precipitation and scale incognizance in regional to global atmospheric models. J. Climate, 26, 9313−9333, https://doi.org/10.1175/JCLI-D-13-00005.1.
O’Brien, T. A., W. D. Collins, K. Kashinath, O. Rübel, S. Byna, J. M. Gu, H. Krishnan, and P. A. Ullrich, 2016: Resolution dependence of precipitation statistical fidelity in hindcast simulations. Journal of Advances in Modeling Earth Systems, 8, 976−990, https://doi.org/10.1002/2016MS000671.
Qiu, J., 2008: China: The third pole. Nature, 454, 393−396, https://doi.org/10.1038/454393a.
Rahimi, S. R., C. L. Wu, X. H. Liu, and H. Brown, 2019: Exploring a variable-resolution approach for simulating regional climate over the Tibetan Plateau using VR-CESM. J. Geophys. Res., 124, 4490−4513, https://doi.org/10.1029/2018JD028925.
Ringler, T. D., D. Jacobsen, M. Gunzburger, L. L. Ju, M. Duda, and W. Skamarock, 2011: Exploring a multiresolution modeling approach within the shallow-water equations. Mon. Wea. Rev., 139, 3348−3368, https://doi.org/10.1175/MWR-D-10-05049.1.
Ringler, T.D., L. Ju, and M. Gunzburger, 2008: A multiresolution method for climate system modeling: application of spherical centroidal Voronoi tessellations. Ocean Dynamics, 58, 475−498, https://doi.org/10.1007/s10236-008-0157-2.
Sakaguchi, K., and Coauthors, 2015: Exploring a multiresolution approach using AMIP simulations. J. Climate, 28, 5549−5574, https://doi.org/10.1175/JCLI-D-14-00729.1.
Sakaguchi, K., J. Lu, L. R. Leung, C. Zhao, Y. J. Li, and S. Hagos, 2016: Sources and pathways of the upscale effects on the Southern Hemisphere jet in MPAS-CAM4 variable-resolution simulations. Journal of Advances in Modeling Earth Systems, 8, 1786−1805, https://doi.org/10.1002/2016MS000743.
Sandu, I., P. Bechtold, A. Beljaars, A. Bozzo, F. Pithan, T. G. Shepherd, and A. Zadra, 2016: Impacts of parameterized orographic drag on the Northern Hemisphere winter circulation. Journal of Advances in Modeling Earth Systems, 8, 196−211, https://doi.org/10.1002/2015MS000564.
Shen, C., J. L. Zha, J. Wu, D. M. Zhao, C. Azorin-Molina, W. X. Fan, and Y. Yu, 2022: Does CRA-40 outperform other reanalysis products in evaluating near-surface wind speed changes over China. Atmospheric Research, 266, 105948, https://doi.org/10.1016/j.atmosres.2021.105948.
Shen, M. G., S. L. Piao, N. Cong, G. X. Zhang, and I. A. Jassens, 2015: Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Global Change Biology, 21, 3647−3656, https://doi.org/10.1111/gcb.12961.
Singh, P., and L. Bengtsson, 2004: Hydrological sensitivity of a large Himalayan basin to climate change. Hydrological Processes, 18, 2363−2385, https://doi.org/10.1002/hyp.1468.
Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 3465−3485, https://doi.org/10.1016/j.jcp.2007.01.037.
Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal voronoi tesselations and c-grid staggering. Mon. Wea. Rev., 140, 3090−3105, https://doi.org/10.1175/MWR-D-11-00215.1.
Su, F. G., X. L. Duan, D. L. Chen, Z. C. Hao, and L. Cuo, 2013: Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J. Climate, 26, 3187−3208, https://doi.org/10.1175/JCLI-D-12-00321.1.
Sun, R. C., H. L. Yuan, X. L. Liu, and X. M. Jiang, 2016: Evaluation of the latest satellite–gauge precipitation products and their hydrologic applications over the Huaihe River basin. J. Hydrol., 536, 302−319, https://doi.org/10.1016/j.jhydrol.2016.02.054.
Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095−5115, https://doi.org/10.1175/2008MWR2387.1.
Tian, L. D., T. D. Yao, K. MacClune, J. W. C. White, A. Schilla, B. Vaughn, R. Vachon, and K. Ichiyanagi, 2007: Stable isotopic variations in west China: A consideration of moisture sources. J. Geophys. Res., 112, D10112, https://doi.org/10.1029/2006JD007718.
Wang, Y., and Coauthors, 2020: Synergy of orographic drag parameterization and high resolution greatly reduces biases of WRF-simulated precipitation in central Himalaya. Climate Dyn., 54, 1729−1740, https://doi.org/10.1007/s00382-019-05080-w.
Wu, G. X. and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. Journal of Hydrometeorology, 8, 770−789, https://doi.org/10.1175/JHM609.1.
Wu, G. X., Y. M. Liu, B. W. Dong, X. Y. Liang, A. M. Duan, Q. Bao, and J. J. Yu, 2012: Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation. Climate Dyn., 39, 1169−1181, https://doi.org/10.1007/s00382-012-1334-z.
Wu, G. X., and Coauthors, 2015: Tibetan Plateau climate dynamics: Recent research progress and outlook. National Science Review, 2, 100−116, https://doi.org/10.1093/nsr/nwu045.
Xu, J. W., and Coauthors, 2018: On the role of horizontal resolution over the Tibetan Plateau in the REMO regional climate model. Climate Dyn., 51, 4525−4542, https://doi.org/10.1007/s00382-018-4085-7.
Xu, M. Y., and Coauthors, 2021: Convection-permitting hindcasting of diurnal variation of Mei-yu rainfall over East China with a global variable-resolution model. J. Geophys. Res., 126, e2021JD034823, https://doi.org/10.1029/2021JD034823.
Xu, X. D., C. G. Lu, X. H. Shi, and S. T. Gao, 2008: World water tower: An atmospheric perspective. Geophys. Res. Lett., 35, L20815, https://doi.org/10.1029/2008GL035867.
Xu, Y., X. J. Gao, and F. Giorgi, 2010: Upgrades to the reliability ensemble averaging method for producing probabilistic climate-change projections. Climate Research, 41, 61−81, https://doi.org/10.3354/cr00835.
Xue, H. L., X. S. Shen, and Y. Su, 2011: Parameterization of turbulent orographic form drag and implementation in GRAPES. Journal of Applied Meteorological Science, 22, 169−181, https://doi.org/10.3969/j.issn.1001-7313.2011.02.006.
Yanai, M., and G.-X. Wu, 2006: Effects of the Tibetan Plateau. The Asian Monsoon, B. Wang, Ed., Springer, 513--549,
Yang, K., B. S. Ye, D. G. Zhou, B. Y. Wu, T. Foken, J. Qin, and Z. Y. Zhou, 2011: Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Climatic Change, 109, 517−534, https://doi.org/10.1007/s10584-011-0099-4.
Yang, Q., L. R. Leung, S. A. Rauscher, T. D. Ringler, and M. A. Taylor, 2014: Atmospheric moisture budget and spatial resolution dependence of precipitation extremes in aquaplanet simulations. J. Climate, 27, 3565−3581, https://doi.org/10.1175/JCLI-D-13-00468.1.
Yao, B., C. Liu, Y. Yin, Z. Q. Liu, C. X. Shi, H. Iwabuchi, and F. Z. Weng, 2020: Evaluation of cloud properties from reanalyses over East Asia with a radiance-based approach. Atmospheric Measurement Techniques, 13, 1033−1049, https://doi.org/10.5194/amt-13-1033-2020.
Yao, T. D., and Coauthors, 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2, 663−667, https://doi.org/10.1038/nclimate1580.
Yatagai, A., P. Xie, and P. Alpert, 2008: Development of a daily gridded precipitation data set for the Middle East. Advances in Geosciences, 12, 165−170, https://doi.org/10.5194/adgeo-12-165-2008.
Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 1401−1415, https://doi.org/10.1175/BAMS-D-11-00122.1.
Ye, D.-Z., and G. X. Wu, 1998: The role of the heat source of the Tibetan Plateau in the general circulation. Meteorol. Atmos. Phys., 67, 181−198, https://doi.org/10.1007/BF01277509.
Yu, X. J., L. X. Zhang, T. J. Zhou, and J. W. Liu, 2021: The Asian subtropical westerly jet stream in CRA-40, ERA5, and CFSR reanalysis data: Comparative assessment. J. Meteor. Res., 35, 46−63, https://doi.org/10.1007/s13351-021-0107-1.
Zhang, C., Q. H. Tang, and D. L. Chen, 2017: Recent changes in the moisture source of precipitation over the Tibetan Plateau. J. Climate, 30, 1807−1819, https://doi.org/10.1175/JCLI-D-15-0842.1.
Zhang, M. X., and Coauthors, 2020: Impact of topography on black carbon transport to the southern Tibetan Plateau during the pre-monsoon season and its climatic implication. Atmospheric Chemistry and Physics, 20, 5923−5943, https://doi.org/10.5194/acp-20-5923-2020.
Zhang, R. H., T. Koike, X. D. Xu, Y. M. Ma, and K. Yang, 2012: A China-Japan cooperative JICA atmospheric observing network over the Tibetan Plateau (JICA/Tibet Project): An overviews. J. Meteor. Soc. Japan, 90, 1−16, https://doi.org/10.2151/jmsj.2012-C01.
Zhao, B., B. Zhang, C. X., Shi, and J. W. Liu, 2019a: Comparison of the global energy cycle between Chinese reanalysis interim and ECMWF reanalysis. Journal of Meteorological Research, 33, 563−575, https://doi.org/10.1007/s13351-019-8129-7.
Zhao, C., and Coauthors, 2016: Exploring the impacts of physics and resolution on aqua-planet simulations from a nonhydrostatic global variable-resolution modeling framework. Journal of Advances in Modeling Earth Systems, 8, 1751−1768, https://doi.org/10.1002/2016MS000727.
Zhao, C., and Coauthors, 2019b: Modeling extreme precipitation over East China with a global variable-resolution modeling framework (MPASv5.2): Impacts of resolution and physics. Geoscientific Model Development, 12, 2707−2726, https://doi.org/10.5194/gmd-12-2707-2019.
Zhao, P., X. J. Zhou, J. M. Chen, G. Liu, and S. L. Nan, 2019c: Global climate effects of summer Tibetan Plateau. Science Bulletin, 64, 1−3, https://doi.org/10.1016/j.scib.2018.11.019.
Zhao, Y., and T. J. Zhou, 2020: Asian water tower evinced in total column water vapor: A comparison among multiple satellite and reanalysis data sets. Climate Dyn., 54, 231−245, https://doi.org/10.1007/s00382-019-04999-4.
Zhao, Y., T. J. Zhou, P. X. Li, K. Furtado, and L. W. Zou, 2021: Added value of a convection permitting model in simulating atmospheric water cycle over the Asian Water Tower. J. Geophys. Res., 126, e2021JD034788, https://doi.org/10.1029/2021JD034788.
Zhou, X., A. Beljaars, Y. Wang, B. Huang, C. Lin, Y. Chen, and H. Wu, 2017: Evaluation of WRF simulations with different selections of subgrid orographic drag over the Tibetan Plateau. J. Geophys. Res., 122, 9759−9772, https://doi.org/10.1002/2017JD027212.
Zhu, Y.-Y., and S. N. Yang, 2020: Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Advances in Climate Change Research, 11, 239−251,