Adames, Á. F., and J. M. Wallace, 2014: Three-dimensional structure and evolution of the vertical velocity and divergence fields in the MJO. J. Atmos. Sci., 71, 4661−4681, https://doi.org/10.1175/JAS-D-14-0091.1.
Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. J. Climate, 15, 2205−2231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.
Andersen, J. A., and Z. M. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 2782−2804, https://doi.org/10.1175/JCLI-D-11-00168.1.
Ashok, K., C. Y. Tam, and W. J. Lee, 2009: ENSO Modoki impact on the Southern Hemisphere storm track activity during extended austral winter. Geophys. Res. Lett., 36, L12705, https://doi.org/10.1029/2009GL038847.
Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163−172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.
Camargo, S. J., M. C. Wheeler, and A. H. Sobel, 2009: Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci., 66, 3061−3074, https://doi.org/10.1175/2009JAS3101.1.
Cassou, C., 2008: Intraseasonal interaction between the Madden-Julian Oscillation and the North Atlantic Oscillation. Nature, 455, 523−527, https://doi.org/10.1038/nature07286.
Chen, L., T. Li, B. Wang, and L. Wang, 2017: Formation Mechanism for 2015/16 Super El Niño. Sci. Rep., 7, 2975, https://doi.org/10.1038/s41598-017-02926-3.
Chen, X., C. Y. Li, and Y. K. Tan, 2015: The influence of El Niño on MJO over the equatorial pacific. Journal of Ocean University of China, 14, 1−8, https://doi.org/10.1007/s11802-015-2381-y.
Chen, X., J. Ling, and C. Y. Li, 2016: Evolution of the Madden-Julian oscillation in two types of El Niño. J. Climate, 29, 1919−1934, https://doi.org/10.1175/JCLI-D-15-0486.1.
Dee, D. P., and Coauthors, 2011: The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553−597, https://doi.org/10.1002/qj.828.
Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteorol. Climatol., 18, 1016−1022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.
Feng, J., P. Liu, W. Chen, and X. C. Wang, 2015: Contrasting Madden-Julian oscillation activity during various stages of ep and CP El Niños. Atmospheric Science Letters, 16, 32−37, https://doi.org/10.1002/asl2.516.
Ferranti, L., T. N. Palmer, F. Molteni, and E. Klinker, 1990: Tropical-extratropical interaction associated with the 30−60 day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 2177−2199, https://doi.org/10.1175/1520-0469(1990)047<2177:TEIAWT>2.0.CO;2.
Geng, X., W. J. Zhang, M. F. Stuecker, P. Liu, F. F. Jin, and G. R. Tan, 2017: Decadal modulation of the ENSO-East Asian winter monsoon relationship by the Atlantic Multidecadal Oscillation. Climate Dyn., 49, 2531−2544, https://doi.org/10.1007/s00382-016-3465-0.
Gushchina, D., and B. Dewitte, 2012: Intraseasonal tropical atmospheric variability associated with the two flavors of El Niño. Mon. Wea. Rev., 140, 3669−3681, https://doi.org/10.1175/MWR-D-11-00267.1.
Hendon, H. H., M. C. Wheeler, and C. D. Zhang, 2007: Seasonal dependence of the MJO-ENSO relationship. J. Climate, 20, 531−543, https://doi.org/10.1175/JCLI4003.1.
Hsu, P. C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden-Julian oscillation. J. Climate, 25, 4914−4931, https://doi.org/10.1175/JCLI-D-11-00310.1.
Hsu, P. C., and T. Xiao, 2017: Differences in the initiation and development of the Madden-Julian oscillation over the Indian Ocean associated with two types of El Niño. J. Climate, 30, 1397−1415, https://doi.org/10.1175/JCLI-D-16-0336.1.
Jacox, M. G., E. L. Hazen, K. D. Zaba, D. L. Rudnick, C. A. Edwards, A. M. Moore, and S. J. Bograd, 2016: Impacts of the 2015−2016 El Niño on the California Current System: Early assessment and comparison to past events. Geophys. Res. Lett., 43, 7072−7080, https://doi.org/10.1002/2016GL069716.
Kao, H. Y., and J. Y. Yu, 2009: Contrasting Eastern-Pacific and central-pacific types of ENSO. J. Climate, 22, 615−632, https://doi.org/10.1175/2008JCLI2309.1.
Kapur, A., and C. D. Zhang, 2012: Multiplicative MJO forcing of ENSO. J. Climate, 25, 8132−8147, https://doi.org/10.1175/JCLI-D-11-00609.1.
Kemball-Cook, S. R., and B. C. Weare, 2001: The onset of convection in the Madden-Julian oscillation. J. Climate, 14, 780−793, https://doi.org/10.1175/1520-0442(2001)014<0780:TOOCIT>2.0.CO;2.
Kessler, W. S., M. J. McPhaden, and K. M. Weickmann, 1995: Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J. Geophys. Res., 100, 10613−10631, https://doi.org/10.1029/95JC00382.
Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden-Julian oscillation. J. Atmos. Sci., 62, 2790−2809, https://doi.org/10.1175/JAS3520.1.
Kim, D., J. S. Kug, and A. H. Sobel, 2014: Propagating versus nonpropagating Madden-Julian oscillation events. J. Climate, 27, 111−125, https://doi.org/10.1175/JCLI-D-13-00084.1.
Kim, H. M., C. D. Hoyos, P. J. Webster, and I. S. Kang, 2010: Ocean-atmosphere coupling and the boreal winter MJO. Climate Dyn., 35, 771−784, https://doi.org/10.1007/s00382-009-0612-x.
Kug, J. S., F. F. Jin, and S. I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499−1515, https://doi.org/10.1175/2008JCLI2624.1.
L’Heureux, M. L., and Coauthors, 2017: Observing and Predicting the 2015/16 El Niño. Bull. Amer. Meteor. Soc., 98, 1363−1382, https://doi.org/10.1175/BAMS-D-16-0009.1.
Larkin, N. K., and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, https://doi.org/10.1029/2005GL022860.
Lau, N. C., and M. J. Nath, 2006: ENSO modulation of the interannual and intraseasonal variability of the East Asian monsoon−A model study. J. Climate, 19, 4508−4530, https://doi.org/10.1175/JCLI3878.1.
Levine, A. F. Z., and M. J. McPhaden, 2016: How the July 2014 easterly wind burst gave the 2015-2016 El Niño a head start. Geophys. Res. Lett., 43, 6503−6510, https://doi.org/10.1002/2016GL069204.
Li, K. P., Y. L. Liu, Z. Li, Y. Yang, L. Feng, S. Khokiattiwong, W. D. Yu, and S. H. Liu, 2018: Impacts of ENSO on the Bay of Bengal summer monsoon onset via modulating the intraseasonal oscillation. Geophys. Res. Lett., 45, 5220−5228, https://doi.org/10.1029/2018GL078109.
Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275−1277.
Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden-Julian oscillation. J. Meteor. Soc. Japan, 72, 401−412, https://doi.org/10.2151/jmsj1965.72.3_401.
Lin, A. L., and T. Li, 2008: Energy spectrum characteristics of boreal summer intraseasonal oscillations: Climatology and variations during the ENSO developing and decaying phases. J. Climate, 21, 6304−6320, https://doi.org/10.1175/2008JCLI2331.1.
Liu, F., T. Li, H. Wang, L. Deng, and Y. W. Zhang, 2016a: Modulation of boreal summer intraseasonal oscillations over the western North Pacific by ENSO. J. Climate, 29, 7189−7201, https://doi.org/10.1175/JCLI-D-15-0831.1.
Liu, F., L. Zhou, J. Ling, X. H. Fu, and G. Huang, 2016b: Relationship between SST anomalies and the intensity of intraseasonal variability. Theor. Appl. Climatol., 124(3−4), 847−854, https://doi.org/10.1007/s00704-015-1458-2.
Lyu, Y., Y. L. Li, X. H. Tang, F. Wang, and J. N. Wang, 2018: Contrasting intraseasonal variations of the equatorial pacific ocean between the 1997−1998 and 2015−2016 El Niño events. Geophys. Res. Lett., 45, 9748−9756, https://doi.org/10.1029/2018GL078915.
Madden, R. A., and P. R. Julian, 1971: Detection of a 40−50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702−708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.
Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40-50 day period. J. Atmos. Sci., 29, 1109−1123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.
Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711−729, https://doi.org/10.1175/2008JCLI2542.1.
Maloney, E. D., and B. O. Wolding, 2015: Initiation of an intraseasonal oscillation in an aquaplanet general circulation model. Journal of Advances in Modeling Earth Systems, 7, 1956−1976, https://doi.org/10.1002/2015MS000495.
McPhaden, M. J., 1999: Genesis and evolution of the 1997−98 El Niño. Science, 283, 950−954, https://doi.org/10.1126/science.283.5404.950.
Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 3−12, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.
Paek, H., J. Y. Yu, and C. C. Qian, 2017: Why were the 2015/2016 and 1997/1998 extreme El Niños different? Geophys Res. Lett., 44, 1848−1856, https://doi.org/10.1002/2016GL071515.
Pritchard, M. S., and C. S. Bretherton, 2014: Causal evidence that rotational moisture advection is critical to the superparameterized Madden-Julian oscillation. J. Atmos. Sci., 71, 800−815, https://doi.org/10.1175/JAS-D-13-0119.1.
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.
Ren, H. L., and F. F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, https://doi.org/10.1029/2010GL046031.
Smith, S. R., D. M. Legler, M. J. Remigio, and J. J. O’Brien, 1999: Comparison of 1997−98 U.S. temperature and precipitation anomalies to historical ENSO warm phases. J. Climate, 12, 3507−3515, https://doi.org/10.1175/1520-0442(1999)012<3507:COUSTA>2.0.CO;2.
Sobel, A., and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187−192, https://doi.org/10.1175/JAS-D-12-0189.1.
Sperber, K. R., 2003: Propagation and the vertical structure of the Madden-Julian oscillation. Mon. Wea. Rev., 131, 3018−3037, https://doi.org/10.1175/1520-0493(2003)131<3018:PATVSO>2.0.CO;2.
Tang, Y. M., and B. Yu, 2008: MJO and its relationship to ENSO. J. Geophys. Res., 113, D14106, https://doi.org/10.1029/2007JD009230.
Vecchi, G. A., and D. E. Harrison, 2000: Tropical Pacific Sea surface temperature anomalies, El Niño, and equatorial westerly wind events. J. Climate, 13, 1814−1830, https://doi.org/10.1175/1520-0442(2000)013<1814:TPSSTA>2.0.CO;2.
Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. Von Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103, 14241−14259, https://doi.org/10.1029/97JC02905.
Wang, B., 1988: Dynamics of tropical low-frequency waves—An analysis of the moist Kelvin wave. J. Atmosp.heric Sci., 45, 2051−2065, https://doi.org/10.1175/1520-0469(1988)045<2051:DOTLFW>2.0.CO;2.
Wang, B., G. S. Chen, and F. Liu, 2019: Diversity of the Madden-Julian oscillation. Science Advances, 5(7), eaax0220, https://doi.org/10.1126/sciadv.aax0220.
Wang, L., T. Li, L. Chen, S. K. Behera, and T. Nasuno, 2018: Modulation of the MJO intensity over the equatorial western Pacific by two types of El Niño. Climate Dyn., 51, 687−700, https://doi.org/10.1007/s00382-017-3949-6.
Weickmann, K. M., G. R. Lussky, and J. E. Kutzbach, 1985: Intraseasonal (30−60 day) fluctuations of outgoing longwave radiation and 250 mb streamfunction during Northern Winter. Mon. Wea. Rev., 113, 941−961, https://doi.org/10.1175/1520-0493(1985)113<0941:IDFOOL>2.0.CO;2.
Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917−1932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.
Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539−2558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.
Yanai, M., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611−627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.
Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57(3), 227−242, https://doi.org/10.2151/jmsj1965.57.3_227.
Zavala-Garay, J., C. Zhang, A. M. Moore, and R. Kleeman, 2005: The linear response of ENSO to the Madden-Julian oscillation. J. Climate, 18, 2441−2459, https://doi.org/10.1175/JCLI3408.1.
Zhang, C. D., and J. Gottschalck, 2002: SST Anomalies of ENSO and the Madden-Julian Oscillation in the Equatorial Pacific. J. Climate, 15, 2429−2445, https://doi.org/10.1175/1520-0442(2002)015<2429:SAOEAT>2.0.CO;2.
Zhang, W. J., F. F. Jin, and A. Turner, 2014: Increasing autumn drought over southern China associated with ENSO regime shift. Geophys. Res. Lett., 41, 4020−4026, https://doi.org/10.1002/2014GL060130.
Zhang, W. J., and Coauthors, 2016: Unraveling El Niño's impact on the East Asian monsoon and Yangtze River summer flooding. Geophys. Res. Lett., 43(21), 11375−11382, https://doi.org/10.1002/2016GL071190.
Zhang, W. J., H. Y. Li, F. F. Jin, M. F. Stuecker, A. G. Turner, and N. P. Klingaman, 2015: The annual-cycle modulation of meridional asymmetry in ENSO’s atmospheric response and its dependence on ENSO zonal structure. J. Climate, 28, 5795−5812, https://doi.org/10.1175/JCLI-D-14-00724.1.
Zhao, C. B., T. Li, and T. J. Zhou, 2013: Precursor signals and processes associated with MJO initiation over the tropical Indian Ocean. J. Climate, 26, 291−307, https://doi.org/10.1175/JCLI-D-12-00113.1.
Zheng, C., E. K. M. Chang, H. M. Kim, M. H. Zhang, and W. Q. Wang, 2018: Impacts of the Madden-Julian oscillation on storm-track activity, surface air temperature, and precipitation over North America. J. Climate, 31, 6113−6134, https://doi.org/10.1175/JCLI-D-17-0534.1.