Abhik, S., H. H. Hendon, and M. C. Wheeler, 2019: On the sensitivity of convectively coupled equatorial waves to the Quasi-Biennial Oscillation. J. Climate, 32, 5833−5847, https://doi.org/10.1175/JCLI-D-19-0010.1.
Akritidis, D., A. Pozzer, and P. Zanis, 2019: On the impact of future climate change on tropopause folds and tropospheric ozone. Atmospheric Chemistry and Physics, 19, 14 387−14 401, https://doi.org/10.5194/acp-19-14387-2019.
Albers, J. R., and T. R. Nathan, 2013: Ozone loss and recovery and the preconditioning of upward-propagating planetary wave activity. J. Atmos. Sci., 70, 3977−3994, https://doi.org/10.1175/JAS-D-12-0259.1.
Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 2031−2048, https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.
Andrews, D. G., and M. E. McIntyre, 1978a: Generalized Eliassen-Palm and Charney-Drazin theorems for waves on Axismmetric mean flows in compressible atmospheres. J. Atmos. Sci., 35, 175−185, https://doi.org/10.1175/1520-0469(1978)035<0175:GEPACD>2.0.CO;2.
Andrews, D. G., and M. E. McIntyre, 1978b: On wave-action and its relatives. J. Fluid Mech., 89, 647−664, https://doi.org/10.1017/S0022112078002785.
Angell, J. K., and J. Korshover, 1964: Quasi-biennial variations in temperature, total ozone, and tropopause height. J. Atmos. Sci., 21, 479−492, https://doi.org/10.1175/1520-0469(1964)021<0479:QBVITT>2.0.CO;2.
Anstey, J. A., and Coauthors, 2022: Impacts, processes and projections of the Quasi-Biennial Oscillation. Nature Reviews Earth & Environment, 3, 588−603, https://doi.org/10.1038/s43017-022-00323-7.
Antonescu, B., G. Vaughan, and D. M. Schultz, 2013: A five-year radar-based climatology of tropopause folds and deep convection over Wales, United Kingdom. Mon. Wea. Rev., 141, 1693−1707, https://doi.org/10.1175/MWR-D-12-00246.1.
Aquila, V., L. D. Oman, R. S. Stolarski, P. R. Colarco, and P. A. Newman, 2012: Dispersion of the volcanic sulfate cloud from a Mount Pinatubo–like eruption. J. Geophys. Res.: Atmos., 117, D06216, https://doi.org/10.1029/2011JD016968.
Aquila, V., L. D. Oman, R. Stolarski, A. R. Douglass, and P. A. Newman, 2013: The response of ozone and nitrogen dioxide to the eruption of Mt. Pinatubo at Southern and Northern Midlatitudes. J. Atmos. Sci., 70, 894−900, https://doi.org/10.1175/JAS-D-12-0143.1.
Aubry, T. J., J. Staunton-Sykes, L. R. Marshall, J. Haywood, N. L. Abraham, and A. Schmidt, 2021: Climate change modulates the stratospheric volcanic sulfate aerosol lifecycle and radiative forcing from tropical eruptions. Nature Communications, 12, 4708, https://doi.org/10.1038/s41467-021-24943-7.
Austin, J., 2002: A three-dimensional coupled chemistry–climate model simulation of past stratospheric trends. J. Atmos. Sci., 59, 218−232, https://doi.org/10.1175/1520-0469(2002)059<0218:ATDCCC>2.0.CO;2.
Ayarzagüena, B., U. Langematz, S. Meul, S. Oberländer, J. Abalichin, and A. Kubin, 2013: The role of climate change and ozone recovery for the future timing of major stratospheric warmings. Geophys. Res. Lett., 40, 2460−2465, https://doi.org/10.1002/grl.50477.
Ayarzagüena, B., and Coauthors, 2018: No robust evidence of future changes in major stratospheric sudden warmings: A multi-model assessment from CCMI. Atmospheric Chemistry and Physics, 18, 11 277−11 287, https://doi.org/10.5194/acp-18-11277-2018.
Ayarzagüena, B., and Coauthors, 2020: Uncertainty in the response of sudden stratospheric warmings and stratosphere-troposphere coupling to quadrupled CO2 concentrations in CMIP6 models. J. Geophys. Res.: Atmos., 125, e2019JD032345, https://doi.org/10.1029/2019JD032345.
Azoulay, A., H. Schmidt, and C. Timmreck, 2021: The Arctic polar vortex response to volcanic forcing of different strengths. J. Geophys. Res.: Atmos., 126, e2020JD034450, https://doi.org/10.1029/2020JD034450.
Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581−584, https://doi.org/10.1126/science.1063315.
Baldwin, M. P., and D. W. J. Thompson, 2009: A critical comparison of stratosphere–troposphere coupling indices. Quart. J. Roy. Meteor. Soc., 135, 1661−1672, https://doi.org/10.1002/qj.479.
Baldwin, M. P., M. Dameris, and T. G. Shepherd, 2007: How will the stratosphere affect climate change? Science, 316, 1576−1577, https://doi.org/10.1126/science.1144303.
Baldwin, M. P., and Coauthors, 2001: The Quasi-Biennial Oscillation. Rev. Geophys., 39, 179−229, https://doi.org/10.1029/1999RG000073.
Baldwin, M. P., and Coauthors, 2019: 100 years of progress in understanding the stratosphere and mesosphere. Meteor. Monogr., 59, 27.1−27.62, https://doi.org/10.1175/AMSMONOGRAPHS-D-19-0003.1.
Baldwin, M. P., and Coauthors, 2021: Sudden stratospheric warmings. Rev. Geophys., 59, e2020RG000708, https://doi.org/10.1029/2020RG000708.
Ball, W. T., and Coauthors, 2018: Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery. Atmospheric Chemistry and Physics, 18, 1379−1394, https://doi.org/10.5194/acp-18-1379-2018.
Banerjee, A., J. C. Fyfe, L. M. Polvani, D. Waugh, and K.-L. Chang, 2020: A pause in Southern Hemisphere circulation trends due to the Montreal Protocol. Nature, 579, 544−548, https://doi.org/10.1038/s41586-020-2120-4.
Banerjee, A., G. Chiodo, M. Previdi, M. Ponater, A. J. Conley, and L. M. Polvani, 2019: Stratospheric water vapor: An important climate feedback. Climate Dyn., 53, 1697−1710, https://doi.org/10.1007/s00382-019-04721-4.
Belmont, A. D., and D. G. Dartt, 1968: Variation with longitude of the Quasi-Biennial Oscillation. Mon. Wea. Rev., 96, 767−777, https://doi.org/10.1175/1520-0493(1968)096<0767:VWLOTQ>2.0.CO;2.
Bitz, C. M., and L. M. Polvani, 2012: Antarctic climate response to stratospheric ozone depletion in a fine resolution ocean climate model. Geophys. Res. Lett., 39, L20705, https://doi.org/10.1029/2012GL053393.
Boyd, J. P., 1976: The noninteraction of waves with the zonally averaged flow on a spherical earth and the interrelationships on eddy fluxes of energy, heat and momentum. J. Atmos. Sci., 33, 2285−2291, https://doi.org/10.1175/1520-0469(1976)033<2285:TNOWWT>2.0.CO;2.
Brewer, A. W., 1949: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 351−363, https://doi.org/10.1002/qj.49707532603.
Butchart, N., 2014: The Brewer-Dobson circulation. Rev. Geophys., 52, 157−184, https://doi.org/10.1002/2013RG000448.
Butchart, N., 2022: The stratosphere: A review of the dynamics and variability. Weather and Climate Dynamics, 3, 1237−1272, https://doi.org/10.5194/wcd-3-1237-2022.
Butchart, N., and A. A. Scaife, 2001: Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410, 799−802, https://doi.org/10.1038/35071047.
Butchart, N., and Coauthors, 2010: Chemistry–climate model simulations of twenty-first century stratospheric climate and circulation changes. J. Climate, 23, 5349−5374, https://doi.org/10.1175/2010JCLI3404.1.
Butler, A., and Coauthors, 2019: Sub-seasonal predictability and the stratosphere. Sub-Seasonal to Seasonal Prediction, A. W. Robertson and F. Vitart, Eds., Elsevier, 223−241, https://doi.org/10.1016/B978-0-12-811714-9.00011-5.
Butler, A. H., and E. P. Gerber, 2018: Optimizing the definition of a sudden stratospheric warming. J. Climate, 31, 2337−2344, https://doi.org/10.1175/JCLI-D-17-0648.1.
Butler, A. H., D. J. Seidel, S. C. Hardiman, N. Butchart, T. Birner, and A. Match, 2015: Defining sudden stratospheric warmings. Bull. Amer. Meteor. Soc., 96, 1913−1928, https://doi.org/10.1175/BAMS-D-13-00173.1.
Calvo, N., L. M. Polvani, and S. Solomon, 2015: On the surface impact of Arctic stratospheric ozone extremes. Environmental Research Letters, 10, 094003, https://doi.org/10.1088/1748-9326/10/9/094003.
Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449−469, https://doi.org/10.1175/JCLI3996.1.
Charlton-Perez, A. J., L. Ferranti, and R. W. Lee, 2018: The influence of the stratospheric state on North Atlantic weather regimes. Quart. J. Roy. Meteor. Soc., 144, 1140−1151, https://doi.org/10.1002/qj.3280.
Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83−109, https://doi.org/10.1029/JZ066i001p00083.
Chen, W., and T. M. Li, 2007: Modulation of northern hemisphere wintertime stationary planetary wave activity: East Asian climate relationships by the Quasi-Biennial Oscillation. J. Geophys. Res.: Atmos., 112, D20120, https://doi.org/10.1029/2007JD008611.
Chen, W., and K. Wei, 2009: Interannual variability of the winter stratospheric polar vortex in the Northern Hemisphere and their relations to QBO and ENSO. Adv. Atmos. Sci., 26, 855−863, https://doi.org/10.1007/s00376-009-8168-6.
Cheung, J. C. H., J. D. Haigh, and D. R. Jackson, 2014: Impact of EOS MLS ozone data on medium-extended range ensemble weather forecasts. J. Geophys. Res.: Atmos., 119, 9253−9266, https://doi.org/10.1002/2014JD021823.
Chipperfield, M. P., and Coauthors, 2017: Detecting recovery of the stratospheric ozone layer. Nature, 549, 211−218, https://doi.org/10.1038/nature23681.
Chipperfield, M. P., and Coauthors, 2018: On the cause of recent variations in lower stratospheric ozone. Geophys. Res. Lett., 45, 5718−5726, https://doi.org/10.1029/2018GL078071.
Collimore, C. C., D. W. Martin, M. H. Hitchman, A. Huesmann, and D. E. Waliser, 2003: On the relationship between the QBO and tropical deep convection. J. Climate, 16, 2552−2568, https://doi.org/10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2.
DallaSanta, K., and L. M. Polvani, 2022: Volcanic stratospheric injections up to 160Tg(S) yield a Eurasian winter warming indistinguishable from internal variability. Atmospheric Chemistry and Physics, 22, 8843−8862, https://doi.org/10.5194/acp-22-8843-2022.
de F. Forster, P. M., and K. P. Shine, 1997: Radiative forcing and temperature trends from stratospheric ozone changes. J. Geophys. Res.: Atmos., 102, 10 841−10 855, https://doi.org/10.1029/96JD03510.
de F. Forster, P. M., and K. P. Shine, 1999: Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling. Geophys. Res. Lett., 26, 3309−3312, https://doi.org/10.1029/1999GL010487.
de F. Forster, P. M., and K. P. Shine, 2002: Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett., 29, 10-1−10-4, https://doi.org/10.1029/2001GL013909.
Densmore, C. R., E. R. Sanabia, and B. S. Barrett, 2019: QBO influence on MJO amplitude over the maritime continent: Physical mechanisms and seasonality. Mon. Wea. Rev., 147, 389−406, https://doi.org/10.1175/MWR-D-18-0158.1.
Deshler, T., M. E. Hervig, D. J. Hofmann, J. M. Rosen, and J. B. Liley, 2003: Thirty years of in situ stratospheric aerosol size distribution measurements from Laramie, Wyoming (41°N), using balloon-borne instruments. J. Geophys. Res.: Atmos., 108, 4167, https://doi.org/10.1029/2002JD002514.
Dessler, A. E., M. R. Schoeberl, T. Wang, S. M. Davis, and K. H. Rosenlof, 2013: Stratospheric water vapor feedback. Proceedings of the National Academy of Sciences of the United States of America, 110, 18 087−18 091, https://doi.org/10.1073/pnas.1310344110.
Dhomse, S. S., and Coauthors, 2018: Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations. Atmospheric Chemistry and Physics, 18, 8409−8438, https://doi.org/10.5194/acp-18-8409-2018.
Dobson, G. M. B., 1956: Origin and distribution of the polyatomic molecules in the atmosphere. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 236, 187−193, https://doi.org/10.1098/rspa.1956.0127.
Dobson, G. M. B., and D. N. Harrison, 1926: Measurements of the amount of ozone in the earth’s atmosphere and its relation to other geophysical conditions. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 110, 660−693, https://doi.org/10.1098/rspa.1926.0040.
Domeisen, D. I. V., and A. H. Butler, 2020: Stratospheric drivers of extreme events at the Earth’s surface. Communications Earth & Environment, 1, 59, https://doi.org/10.1038/s43247-020-00060-z.
Domeisen, D. I. V., and Coauthors, 2020a: The role of the stratosphere in subseasonal to seasonal prediction: 2. Predictability arising from stratosphere-troposphere coupling. J. Geophys. Res.: Atmos., 125, e2019JD030923, https://doi.org/10.1029/2019JD030923.
Domeisen, D. I. V., and Coauthors, 2020b: The role of the stratosphere in subseasonal to seasonal prediction: 1. Predictability of the stratosphere. J. Geophys. Res.: Atmos., 125, e2019JD030920, https://doi.org/10.1029/2019JD030920.
Douglass, A. R., R. S. Stolarski, M. R. Schoeberl, C. H. Jackman, M. L. Gupta, P. A. Newman, J. E. Nielsen, and E. L. Fleming, 2008: Relationship of loss, mean age of air and the distribution of CFCs to stratospheric circulation and implications for atmospheric lifetimes. J. Geophys. Res.: Atmos., 113, D14309, https://doi.org/10.1029/2007JD009575.
Drdla, K., and R. Müller, 2012: Temperature thresholds for chlorine activation and ozone loss in the polar stratosphere. Ann. Geophys., 30, 1055−1073, https://doi.org/10.5194/angeo-30-1055-2012.
Dvortsov, V. L., and S. Solomon, 2001: Response of the stratospheric temperatures and ozone to past and future increases in stratospheric humidity. J. Geophys. Res.: Atmos., 106, 7505−7514, https://doi.org/10.1029/2000JD900637.
Ebdon, R. A., 1960: Notes on the wind flow at 50 mb in tropical and sub-tropical regions in January 1957 and January 1958. Quart. J. Roy. Meteor. Soc., 86, 540−542, https://doi.org/10.1002/qj.49708637011.
Ebdon, R. A., and R. G. Veryard, 1961: Fluctuations in equatorial stratospheric winds. Nature, 189, 791−793, https://doi.org/10.1038/189791a0.
Ferreira, D., J. Marshall, C. M. Bitz, S. Solomon, and A. Plumb, 2015: Antarctic Ocean and sea ice response to ozone depletion: A two-time-scale problem. J. Climate, 28, 1206−1226, https://doi.org/10.1175/JCLI-D-14-00313.1.
Friedel, M., G. Chiodo, A. Stenke, D. I. V. Domeisen, S. Fueglistaler, J. G. Anet, and T. Peter, 2022: Springtime arctic ozone depletion forces northern hemisphere climate anomalies. Nature Geoscience, 15, 541−547, https://doi.org/10.1038/s41561-022-00974-7.
Fu, Q., S. Solomon, H. A. Pahlavan, and P. Lin, 2019: Observed changes in Brewer–Dobson circulation for 1980-2018. Environmental Research Letters, 14, 114026, https://doi.org/10.1088/1748-9326/ab4de7.
Garfinkel, C. I., and D. L. Hartmann, 2011: The Influence of the Quasi-Biennial Oscillation on the troposphere in winter in a hierarchy of models. Part I: Simplified dry GCMs. J. Atmos. Sci., 68, 1273−1289, https://doi.org/10.1175/2011JAS3665.1.
Garfinkel, C. I., T. A. Shaw, D. L. Hartmann, and D. W. Waugh, 2012: Does the Holton–Tan mechanism explain how the Quasi-Biennial Oscillation modulates the Arctic polar vortex? J. Atmos. Sci., 69, 1713−1733, https://doi.org/10.1175/JAS-D-11-0209.1.
Garfinkel, C. I., S.-W. Son, K. Song, V. Aquila, and L. D. Oman, 2017: Stratospheric variability contributed to and sustained the recent hiatus in Eurasian winter warming. Geophys. Res. Lett., 44, 374−382, https://doi.org/10.1002/2016GL072035.
Garfinkel, C. I., and Coauthors, 2021: Influence of the El Niño–Southern Oscillation on entry stratospheric water vapor in coupled chemistry–ocean CCMI and CMIP6 models. Atmospheric Chemistry and Physics, 21, 3725−3740, https://doi.org/10.5194/acp-21-3725-2021.
Gilford, D. M., S. Solomon, and R. W. Portmann, 2016: Radiative impacts of the 2011 abrupt drops in water vapor and ozone in the tropical tropopause layer. J. Climate, 29, 595−612, https://doi.org/10.1175/JCLI-D-15-0167.1.
Giorgetta, M. A., L. Bengtsson, and K. Arpe, 1999: An investigation of QBO signals in the East Asian and Indian monsoon in GCM experiments. Climate Dyn., 15, 435−450, https://doi.org/10.1007/s003820050292.
Gray, L. J., J. A. Anstey, Y. Kawatani, H. Lu, S. Osprey, and V. Schenzinger, 2018: Surface impacts of the Quasi Biennial Oscillation. Atmospheric Chemistry and Physics, 18, 8227−8247, https://doi.org/10.5194/acp-18-8227-2018.
Gregory, J. M., Andrews, T., Good, P., Mauritsen, T., and Forster, P. M., 2016: Small global-mean cooling due to volcanic radiative forcing. Climate Dyn., 47, 3979−3991, https://doi.org/10.1007/s00382-016-3055-1.
Grise, K. M., S.-W. Son, G. J. P. Correa, and L. M. Polvani, 2014: The response of extratropical cyclones in the Southern Hemisphere to stratospheric ozone depletion in the 20th century. Atmospheric Science Letters, 15, 29−36, https://doi.org/10.1002/asl2.458.
Hall, A., and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15, 3043−3057, https://doi.org/10.1175/1520-0442(2002)015<3043:SVITSH>2.0.CO;2.
Hardiman, S. C., N. Butchart, and N. Calvo, 2014: The morphology of the Brewer–Dobson circulation and its response to climate change in CMIP5 simulations. Quart. J. Roy. Meteor. Soc., 140, 1958−1965, https://doi.org/10.1002/qj.2258.
Hartley, D. E., J. T. Villarin, R. X. Black, and C. A. Davis, 1998: A new perspective on the dynamical link between the stratosphere and troposphere. Nature, 391, 471−474, https://doi.org/10.1038/35112.
Haynes, P., P. Hitchcock, M. Hitchman, S. Yoden, H. Hendon, G. Kiladis, K. Kodera, and I. Simpson, 2021: The influence of the stratosphere on the tropical troposphere. J. Meteor. Soc. Japan, 99, 803−845, https://doi.org/10.2151/jmsj.2021-040.
Haynes, P. H., M. E. McIntyre, T. G. Shepherd, C. J. Marks, and K. P. Shine, 1991: On the “Downward Control” of Extratropical Diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651−678, https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.
Hegglin, M. I., and T. G. Shepherd, 2009: Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux. Nature Geoscience, 2, 687−691, https://doi.org/10.1038/ngeo604.
Hegglin, M. I., and Coauthors, 2014: Vertical structure of stratospheric water vapour trends derived from merged satellite data. Nature Geoscience, 7, 768−776, https://doi.org/10.1038/ngeo2236.
Held, I. M., M. Ting, and H. L. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15, 2125−2144, https://doi.org/10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2. .
Hitchcock, P., and I. R. Simpson, 2014: The downward influence of stratospheric sudden warmings. J. Atmos. Sci., 71, 3856−3876, https://doi.org/10.1175/JAS-D-14-0012.1.
Hitchcock, P., and Coauthors, 2022: Stratospheric nudging and predictable surface impacts (SNAPSI): A protocol for investigating the role of stratospheric polar vortex disturbances in subseasonal to seasonal forecasts. Geoscientific Model Development, 15, 5073−5092, https://doi.org/10.5194/gmd-15-5073-2022.
Holton, J. R., and R. S. Lindzen, 1972: An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29, 1076−1080, https://doi.org/10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2.
Holton, J. R., and H.-C. Tan, 1980: The influence of the equatorial Quasi-Biennial Oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 2200−2208, https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2.
Holton, J. R., and H.-C. Tan, 1982: The Quasi-Biennial Oscillation in the Northern Hemisphere lower stratosphere. J. Meteor. Soc. Japan, 60, 140−148, https://doi.org/10.2151/jmsj1965.60.1_140.
Holton, J. R., and A. Gettelman, 2001: Horizontal transport and the dehydration of the stratosphere. Geophys. Res. Lett., 28, 2799−2802, https://doi.org/10.1029/2001GL013148.
Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877−946, https://doi.org/10.1002/qj.49711147002.
Hu, D. Z., Z. Y. Guan, W. S. Tian, and R. C. Ren, 2018: Recent strengthening of the stratospheric Arctic vortex response to warming in the central North Pacific. Nature Communications, 9, 1697, https://doi.org/10.1038/s41467-018-04138-3.
Hu, D. Z., W. S. Tian, F. Xie, C. X. Wang, and J. K. Zhang, 2015: Impacts of stratospheric ozone depletion and recovery on wave propagation in the boreal winter stratosphere. J. Geophys. Res.: Atmos., 120, 8299−8317, https://doi.org/10.1002/2014JD022855.
Hu, J. G., R. C. Ren, and H. M. Xu, 2014: Occurrence of winter stratospheric sudden warming events and the seasonal timing of spring stratospheric final warming. J. Atmos. Sci., 71, 2319−2334, https://doi.org/10.1175/JAS-D-13-0349.1.
Hu, Y. H., W. S. Tian, J. K. Zhang, T. Wang, and M. Xu, 2022: Weakening of Antarctic stratospheric planetary wave activities in early austral spring since the early 2000s: A response to sea surface temperature trends. Atmospheric Chemistry and Physics, 22, 1575−1600, https://doi.org/10.5194/acp-22-1575-2022.
Hu, Y. Y., and K. K. Tung, 2003: Possible ozone-induced long-term changes in planetary wave activity in late winter. J. Climate, 16, 3027−3038, https://doi.org/10.1175/1520-0442(2003)016<3027:POLCIP>2.0.CO;2.
Huang, J. L., and W. S. Tian, 2019: Eurasian cold air outbreaks under different arctic stratospheric polar vortex strengths. J. Atmos. Sci., 76, 1245−1264, https://doi.org/10.1175/JAS-D-18-0285.1.
Huang, J. L., P. Hitchcock, W. S. Tian, and J. Sillin, 2022: Stratospheric influence on the development of the 2018 late winter European cold air outbreak. J. Geophys. Res.: Atmos., 127, e2021JD035877, https://doi.org/10.1029/2021JD035877.
Huang, J. L., P. Hitchcock, A. C. Maycock, C. M. McKenna, and W. S. Tian, 2021: Northern hemisphere cold air outbreaks are more likely to be severe during weak polar vortex conditions. Communications Earth & Environment, 2, 147, https://doi.org/10.1038/s43247-021-00215-6.
Huang, J. L., W. S. Tian, J. K. Zhang, Q. Huang, H. Y. Tian, and J. L. Luo, 2017: The connection between extreme stratospheric polar vortex events and tropospheric blockings. Quart. J. Roy. Meteor. Soc., 143, 1148−1164, https://doi.org/10.1002/qj.3001.
Huang, J. L., W. S. Tian, L. J. Gray, J. K. Zhang, Y. Li, J. L. Luo, and H. Y. Tian, 2018: Preconditioning of Arctic stratospheric polar vortex shift events. J. Climate, 31, 5417−5436, https://doi.org/10.1175/JCLI-D-17-0695.1.
Huang, Y., Y. W. Wang, and H. Huang, 2020: Stratospheric water vapor feedback disclosed by a locking experiment. Geophys. Res. Lett., 47, e2020GL087987, https://doi.org/10.1029/2020GL087987.
Huang, Y., M. H. Zhang, Y. Xia, Y. Y. Hu, and S.-W. Son, 2016: Is there a stratospheric radiative feedback in global warming simulations? Climate Dyn., 46, 177−186, https://doi.org/10.1007/s00382-015-2577-2.
Huangfu, J. L., Y. L. Tang, T. J. Ma, W. Chen, and L. Wang, 2021: Influence of the QBO on tropical convection and its impact on tropical cyclone activity over the western North Pacific. Climate Dyn., 57, 657−669, https://doi.org/10.1007/s00382-021-05731-x.
Iles, C. E., G. C. Hegerl, A. P. Schurer, and X. B. Zhang, 2013: The effect of volcanic eruptions on global precipitation. J. Geophys. Res.: Atmos., 118, 8770−8786, https://doi.org/10.1002/jgrd.50678.
IPCC, 2001: Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, J. T. Houghton, et al., Eds., Cambridge University Press, Cambridge, UK, and New York, USA.
IPCC, 2014: Climate change 2014: Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, O. Edenhofer, et al., Eds., Cambridge University Press, Cambridge, UK, and New York, USA.
IPCC, 2021: Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte, et al., Eds., Cambridge University Press, Cambridge, UK, and New York, USA.
Ito, Y., and A. Matsuzaki, 2015: The action of water vapor on the stratospheric ozone chemistry. Frontiers of Astronomy, Astrophysics and Cosmology, 1, 56−73.
Ivanciu, I., K. Matthes, A. Biastoch, S. Wahl, and J. Harlaß, 2022: Twenty-first-century Southern Hemisphere impacts of ozone recovery and climate change from the stratosphere to the ocean. Weather and Climate Dynamics, 3, 139−171, https://doi.org/10.5194/wcd-3-139-2022.
Ivy, D. J., S. Solomon, N. Calvo, and D. W. J. Thompson, 2017: Observed connections of Arctic stratospheric ozone extremes to Northern Hemisphere surface climate. Environmental Research Letters, 12, 024004, https://doi.org/10.1088/1748-9326/aa57a4.
Joseph, R., and N. Zeng, 2011: Seasonally modulated tropical drought induced by volcanic aerosol. J. Climate, 24, 2045−2060, https://doi.org/10.1175/2009JCLI3170.1.
Kang, S. M., L. M. Polvani, J. C. Fyfe, and M. Sigmond, 2011: Impact of polar ozone depletion on subtropical precipitation. Science, 332, 951−954, https://doi.org/10.1126/science.1202131.
Karpechko, A. Y., and E. Manzini, 2012: Stratospheric influence on tropospheric climate change in the Northern Hemisphere. J. Geophys. Res.: Atmos., 117, D05133, https://doi.org/10.1029/2011JD017036.
Karpechko, A. Y., P. Hitchcock, D. H. W. Peters, and A. Schneidereit, 2017: Predictability of downward propagation of major sudden stratospheric warmings. Quart. J. Roy. Meteor. Soc., 143, 1459−1470, https://doi.org/10.1002/qj.3017.
Karpechko, A. Y., and Coauthors, 2022: Northern Hemisphere stratosphere-troposphere circulation change in CMIP6 models: 1. Inter-model spread and scenario sensitivity. J. Geophys. Res.: Atmos., 127, e2022JD036992, https://doi.org/10.1029/2022JD036992.
Kawatani, Y., and K. Hamilton, 2013: Weakened stratospheric quasibiennial oscillation driven by increased tropical mean upwelling. Nature, 497, 478−481, https://doi.org/10.1038/nature12140.
Keeble, J., and Coauthors, 2021: Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100. Atmospheric Chemistry and Physics, 21, 5015−5061, https://doi.org/10.5194/acp-21-5015-2021.
Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nature Geoscience, 8, 433−440, https://doi.org/10.1038/ngeo2424.
Kilian, M., S. Brinkop, and P. Jöckel, 2020: Impact of the eruption of Mt Pinatubo on the chemical composition of the stratosphere. Atmospheric Chemistry and Physics, 20, 11697−11715, https://doi.org/10.5194/acp-20-11697-2020.
Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. D. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nature Communications, 5, 4646, https://doi.org/10.1038/ncomms5646.
Kim, J., S.-W. Son, E. P. Gerber, and H.-S. Park, 2017: Defining sudden stratospheric warming in climate models: Accounting for biases in model climatologies. J. Climate, 30, 5529−5546, https://doi.org/10.1175/JCLI-D-16-0465.1.
Kirk-Davidoff, D. B., E. J. Hintsa, J. G. Anderson, and D. W. Keith, 1999: The effect of climate change on ozone depletion through changes in stratospheric water vapour. Nature, 402, 399−401, https://doi.org/10.1038/46521.
Kolstad, E. W., T. Breiteig, and A. A. Scaife, 2010: The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 136, 886−893, https://doi.org/10.1002/qj.620.
Konopka, P., M. C. Tao, F. Ploeger, D. F. Hurst, M. L. Santee, J. S. Wright, and M. Riese, 2022: Stratospheric moistening after 2000. Geophys. Res. Lett., 49, e2021GL097609, https://doi.org/10.1029/2021GL097609.
Kremser, S., and Coauthors, 2016: Stratospheric aerosol—Observations, processes, and impact on climate. Rev. Geophys., 54, 278−335, https://doi.org/10.1002/2015RG000511.
Kretschmer, M., D. Coumou, L. Agel, M. Barlow, E. Tziperman, and J. Cohen, 2018: More-persistent weak stratospheric polar vortex states linked to cold extremes. Bull. Amer. Meteor. Soc., 99, 49−60, https://doi.org/10.1175/BAMS-D-16-0259.1.
Krüger, K., B. Naujokat, and K. Labitzke, 2005: The unusual midwinter warming in the Southern Hemisphere stratosphere 2002: A comparison to Northern Hemisphere phenomena. J. Atmos. Sci., 62, 603−613, https://doi.org/10.1175/JAS-3316.1.
Landrum, L. L., M. M. Holland, M. N. Raphael, and L. M. Polvani, 2017: Stratospheric ozone depletion: An unlikely driver of the regional trends in Antarctic sea ice in Austral Fall in the late twentieth century. Geophys. Res. Lett., 44, 11 062−11 070, https://doi.org/10.1002/2017GL075618.
Larson, E. J. L., and R. W. Portmann, 2016: A temporal kernel method to compute effective radiative forcing in CMIP5 transient simulations. J. Climate, 29, 1497−1509, https://doi.org/10.1175/JCLI-D-15-0577.1.
Li, F., and P. Newman, 2020: Stratospheric water vapor feedback and its climate impacts in the coupled atmosphere–ocean Goddard Earth Observing System Chemistry-Climate Model. Climate Dyn., 55, 1585−1595, https://doi.org/10.1007/s00382-020-05348-6.
Li, F., R. S. Stolarski, and P. A. Newman, 2009: Stratospheric ozone in the post-CFC era. Atmospheric Chemistry and Physics, 9, 2207−2213, https://doi.org/10.5194/acp-9-2207-2009.
Liang, Z. Q., J. Rao, D. Guo, and Q. Lu, 2022a: Simulation and projection of the sudden stratospheric warming events in different scenarios by CESM2-WACCM. Climate Dyn., 59, 3741−3761, https://doi.org/10.1007/s00382-022-06293-2.
Liang, Z. Q., J. Rao, D. Guo, Q. Lu, and C. H. Shi, 2022b: Northern winter stratospheric polar vortex regimes and their possible influence on the extratropical troposphere. Climate Dyn., https://doi.org/10.1007/s00382-022-06494-9.
Lim, Y., S.-W. Son, A. G. Marshall, H. H. Hendon, and K.-H. Seo, 2019: Influence of the QBO on MJO prediction skill in the subseasonal-to-seasonal prediction models. Climate Dyn., 53, 1681−1695, https://doi.org/10.1007/s00382-019-04719-y.
Limpasuvan, V., and D. L. Hartmann, 2000: Wave-maintained annular modes of climate variability. J. Climate, 13, 4414−4429, https://doi.org/10.1175/1520-0442(2000)013<4414:WMAMOC>2.0.CO;2.
Lin, P., and Q. Fu, 2013: Changes in various branches of the Brewer–Dobson circulation from an ensemble of chemistry climate models. J. Geophys. Res.: Atmos., 118, 73−84, https://doi.org/10.1029/2012JD018813.
Lindzen, R. S., and J. R. Holton, 1968: A theory of the Quasi-Biennial Oscillation. J. Atmos. Sci., 25, 1095−1107, https://doi.org/10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2.
Liu, F., J. Chai, B. Wang, J. Liu, X. Zhang, and Z. Y. Wang, 2016: Global monsoon precipitation responses to large volcanic eruptions. Scientific Reports, 6, 24331, https://doi.org/10.1038/srep24331.
Liu, F., and Coauthors, 2022: Tropical volcanism enhanced the East Asian summer monsoon during the last millennium. Nature Communications, 13, 3429, https://doi.org/10.1038/s41467-022-31108-7.
Lu, H., M. P. Baldwin, L. J. Gray, and M. J. Jarvis, 2008: Decadal-scale changes in the effect of the QBO on the northern stratospheric polar vortex. J. Geophys. Res.: Atmos., 113, D10114, https://doi.org/10.1029/2007JD009647.
Lu, H., T. J. Bracegirdle, T. Phillips, A. Bushell, and L. Gray, 2014: Mechanisms for the Holton-Tan relationship and its decadal variation. J. Geophys. Res.: Atmos., 119, 2811−2830, https://doi.org/10.1002/2013JD021352.
Lu, Q., J. Rao, C. H. Shi, D. Guo, G. Q. Fu, J. Wang, and Z. Q. Liang, 2022: Possible influence of sudden stratospheric warmings on the atmospheric environment in the Beijing–Tianjin–Hebei region. Atmospheric Chemistry and Physics, 22, 13 087−13 102, https://doi.org/10.5194/acp-22-13087-2022.
Luo, J. L., W. S. Tian, Z. X. Pu, P. Q. Zhang, L. Shang, M. Zhang, and J. Hu, 2013: Characteristics of stratosphere-troposphere exchange during the Meiyu season. J. Geophys. Res.: Atmos., 118, 2058−2072, https://doi.org/10.1029/2012JD018124.
Lynch, A., P. Uotila, and J. J. Cassano, 2006: Changes in synoptic weather patterns in the polar regions in the twentieth and twenty-first centuries, part 2: Antarctic. International Journal of Climatology, 26, 1181−1199, https://doi.org/10.1002/joc.1305.
Ma, T. J., W. Chen, J. L. Huangfu, L. Song, and Q. Y. Cai, 2021: The observed influence of the Quasi-Biennial Oscillation in the lower equatorial stratosphere on the East Asian winter monsoon during early boreal winter. International Journal of Climatology, 41, 6254−6269, https://doi.org/10.1002/joc.7192.
Ma, X., F. Xie, J. P. Li, X. L. Zheng, W. S. Tian, R. Q. Ding, C. Sun, and J. K. Zhang, 2019: Effects of Arctic stratospheric ozone changes on spring precipitation in the northwestern United States. Atmospheric Chemistry and Physics, 19, 861−875, https://doi.org/10.5194/acp-19-861-2019.
Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40-50 day period. J. Atmos. Sci., 29, 1109−1123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.
Mahfouf, J. F., D. Cariolle, J. F. Royer, J. F. Geleyn, and B. Timbal, 1994: Response of the Météo-France climate model to changes in CO2 and sea surface temperature. Climate Dyn., 9, 345−362, https://doi.org/10.1007/BF00223447.
Maleska, S., K. L. Smith, and J. Virgin, 2020: Impacts of stratospheric ozone extremes on arctic high cloud. J. Climate, 33, 8869−8884, https://doi.org/10.1175/JCLI-D-19-0867.1.
Man, W. M., T. J. Zhou, and J. H. Jungclaus, 2014: Effects of large volcanic eruptions on global summer climate and East Asian monsoon changes during the Last Millennium: Analysis of MPI-ESM simulations. J. Climate, 27, 7394−7409, https://doi.org/10.1175/JCLI-D-13-00739.1.
Marshall, A. G., H. H. Hendon, S.-W. Son, and Y. Lim, 2017: Impact of the quasi-biennial oscillation on predictability of the Madden–Julian oscillation. Climate Dyn., 49, 1365−1377, https://doi.org/10.1007/s00382-016-3392-0.
Marshall, L. R., C. J. Smith, P. M. Forster, T. J. Aubry, T. Andrews, and A. Schmidt, 2020: Large variations in volcanic aerosol forcing efficiency due to eruption source parameters and rapid adjustments. Geophys. Res. Lett., 47, e2020GL090241, https://doi.org/10.1029/2020GL090241.
Martin, Z., S.-W. Son, A. Butler, H. Hendon, H. Kim, A. Sobel, S. Yoden, and C. D. Zhang, 2021: The influence of the quasi-biennial oscillation on the Madden–Julian oscillation. Nature Reviews Earth & Environment, 2, 477−489, https://doi.org/10.1038/s43017-021-00173-9.
Matsuno, T., 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28, 1479−1494, https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2.
Maycock, A. C., G. I. T. Masukwedza, P. Hitchcock, and I. R. Simpson, 2020: A regime perspective on the North Atlantic eddy-driven jet response to sudden stratospheric warmings. J. Climate, 33, 3901−3917, https://doi.org/10.1175/JCLI-D-19-0702.1.
Maycock, A. C., M. M. Joshi, K. P. Shine, S. M. Davis, and K. H. Rosenlof, 2014: The potential impact of changes in lower stratospheric water vapour on stratospheric temperatures over the past 30 years. Quart. J. Roy. Meteor. Soc., 140, 2176−2185, https://doi.org/10.1002/qj.2287.
Maycock, A. C., and Coauthors, 2018: Revisiting the mystery of recent stratospheric temperature trends. Geophys. Res. Lett., 45, 9919−9933, https://doi.org/10.1029/2018GL078035.
Min, S.-K., and S.-W. Son, 2013: Multimodel attribution of the Southern Hemisphere Hadley cell widening: Major role of ozone depletion. J. Geophys. Res.: Atmos., 118, 3007−3015, https://doi.org/10.1002/jgrd.50232.
Mitchell, D. M., L. J. Gray, J. Anstey, M. P. Baldwin, and A. J. Charlton-Perez, 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26, 2668−2682, https://doi.org/10.1175/JCLI-D-12-00030.1.
Muthers, S., F. Arfeuille, C. C. Raible, and E. Rozanov, 2015: The impacts of volcanic aerosol on stratospheric ozone and the Northern Hemisphere polar vortex: Separating radiative-dynamical changes from direct effects due to enhanced aerosol heterogeneous chemistry. Atmospheric Chemistry and Physics, 15, 11 461−11 476, https://doi.org/10.5194/acp-15-11461-2015.
Naoe, H., M. Deushi, K. Yoshida, and K. Shibata, 2017: Future changes in the Ozone Quasi-Biennial Oscillation with increasing GHGs and ozone recovery in CCMI simulations. J. Climate, 30, 6977−6997, https://doi.org/10.1175/JCLI-D-16-0464.1.
Nathan, T. R., and E. C. Cordero, 2007: An ozone-modified refractive index for vertically propagating planetary waves. J. Geophys. Res.: Atmos., 112, D02105, https://doi.org/10.1029/2006JD007357.
Ndarana, T., D. W. Waugh, L. M. Polvani, G. J. P. Correa, and E. P. Gerber, 2012: Antarctic ozone depletion and trends in tropopause Rossby wave breaking. Atmospheric Science Letters, 13, 164−168, https://doi.org/10.1002/asl.384.
Neu, J. L., T. Flury, G. L. Manney, M. L. Santee, N. J. Livesey, and J. Worden, 2014: Tropospheric ozone variations governed by changes in stratospheric circulation. Nature Geoscience, 7, 340−344, https://doi.org/10.1038/ngeo2138.
Nie, J., and A. H. Sobel, 2015: Responses of tropical deep convection to the QBO: Cloud-resolving simulations. J. Atmos. Sci., 72, 3625−3638, https://doi.org/10.1175/JAS-D-15-0035.1.
Nowack, P. J., N. L. Abraham, P. Braesicke, and J. A. Pyle, 2018: The impact of stratospheric ozone feedbacks on climate sensitivity estimates. J. Geophys. Res.: Atmos., 123, 4630−4641, https://doi.org/10.1002/2017JD027943.
Nowack, P. J., N. Luke Abraham, A. C. Maycock, P. Braesicke, J. M. Gregory, M. M. Joshi, A. Osprey, and J. A. Pyle, 2015: A large ozone-circulation feedback and its implications for global warming assessments. Nature Climate Change, 5, 41−45, https://doi.org/10.1038/nclimate2451.
Oh, J., S. W. Son, J. Choi, E. P. Lim, C. Garfinkel, H. Hendon, Y. Kim, and H. S. Kang, 2022: Impact of stratospheric ozone on the subseasonal prediction in the southern hemisphere spring. Progress in Earth and Planetary Science, 9, 25, https://doi.org/10.1186/s40645-022-00485-4.
Osprey, S. M., N. Butchart, J. R. Knight, A. A. Scaife, K. Hamilton, J. A. Anstey, V. Schenzinger, and C. Zhang, 2016: An unexpected disruption of the atmospheric quasi-biennial oscillation. Science, 353, 1424−1427, https://doi.org/10.1126/science.aah4156.
Palmeiro, F. M., D. Barriopedro, R. García-Herrera, and N. Calvo, 2015: Comparing sudden stratospheric warming definitions in reanalysis data. J. Climate, 28, 6823−6840, https://doi.org/10.1175/JCLI-D-15-0004.1.
Parker, D. E., H. Wilson, P. D. Jones, J. R. Christy, and C. K. Folland, 1996: The impact of mount Pinatubo on world-wide temperatures. International Journal of Climatology, 16, 487−497, https://doi.org/10.1002/(SICI)1097-0088(199605)16:5<487::AID-JOC39>3.0.CO;2-J.
Perlwitz, J., and N. Harnik, 2003: Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection. J. Climate, 16, 3011−3026, https://doi.org/10.1175/1520-0442(2003)016<3011:OEOASI>2.0.CO;2.
Polvani, L. M., A. Banerjee, and A. Schmidt, 2019: Northern Hemisphere continental winter warming following the 1991 Mt. Pinatubo eruption: Reconciling models and observations. Atmospheric Chemistry and Physics, 19, 6351−6366, https://doi.org/10.5194/acp-19-6351-2019.
Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S.-W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795−812, https://doi.org/10.1175/2010JCLI3772.1.
Quiroz, R. S., 1986: The association of stratospheric warmings with tropospheric blocking. J. Geophys. Res.: Atmos., 91, 5277−5285, https://doi.org/10.1029/JD091iD04p05277.
Ramaswamy, V., Chanin, M.-L., Angell, J., Barnett, J., Gaffen, D., Gelman, M., et al., 2001: Stratospheric temperature trends: Observations and model simulations. Reviews of Geophysics, 39, 71−122, https://doi.org/10.1029/1999RG000065.
Randel, W. J., and Coauthors, 2009: An update of observed stratospheric temperature trends. J. Geophys. Res.: Atmos., 114, D02107, https://doi.org/10.1029/2008JD010421.
Rao, J., and C. I. Garfinkel, 2020: Arctic ozone loss in March 2020 and its seasonal prediction in CFSv2: A comparative study with the 1997 and 2011 cases. J. Geophys. Res.: Atmos., 125, e2020JD033524, https://doi.org/10.1029/2020JD033524.
Rao, J., and R. C. Ren, 2020: Modeling study of the destructive interference between the tropical Indian Ocean and eastern Pacific in their forcing in the southern winter extratropical stratosphere during ENSO. Climate Dyn., 54, 2249−2266, https://doi.org/10.1007/s00382-019-05111-6.
Rao, J., and C. I. Garfinkel, 2021a: Projected changes of stratospheric final warmings in the Northern and Southern Hemispheres by CMIP5/6 models. Climate Dyn., 56, 3353−3371, https://doi.org/10.1007/s00382-021-05647-6.
Rao, J., and C. I. Garfinkel, 2021b: The strong stratospheric polar vortex in March 2020 in sub-seasonal to seasonal models: Implications for empirical prediction of the low Arctic total ozone extreme. J. Geophys. Res.: Atmos., 126, e2020JD034190, https://doi.org/10.1029/2020JD034190.
Rao, J., C. I. Garfinkel, and I. P. White, 2020a: Predicting the downward and surface influence of the February 2018 and January 2019 sudden stratospheric warming events in Subseasonal to Seasonal (S2S) models. J. Geophys. Res.: Atmos., 125, e2019JD031919, https://doi.org/10.1029/2019JD031919.
Rao, J., C. I. Garfinkel, and I. P. White, 2020c: Projected strengthening of the extratropical surface impacts of the stratospheric Quasi-Biennial Oscillation. Geophys. Res. Lett., 47, e2020GL089149, https://doi.org/10.1029/2020GL089149.
Rao, J., C. I. Garfinkel, H. S. Chen, and I. P. White, 2019: The 2019 new year stratospheric sudden warming and its real-time predictions in multiple S2S models. J. Geophys. Res.: Atmos., 124, 11 155−11 174, https://doi.org/10.1029/2019JD030826.
Rao, J., C. I. Garfinkel, I. P. White, and C. Schwartz, 2020b: The Southern Hemisphere minor sudden stratospheric warming in September 2019 and its predictions in S2S models. J. Geophys. Res.: Atmos., 125, e2020JD032723, https://doi.org/10.1029/2020JD032723.
Reed, R. J., W. J. Campbell, L. A. Rasmussen, and D. G. Rogers, 1961: Evidence of a downward-propagating, annual wind reversal in the equatorial stratosphere. J. Geophys. Res., 66, 813−818, https://doi.org/10.1029/JZ066i003p00813.
Ren, R. C., Y. Yang, M. Cai, and J. Rao, 2015: Understanding the systematic air temperature biases in a coupled climate system model through a process-based decomposition method. Climate Dyn., 45, 1801−1817, https://doi.org/10.1007/s00382-014-2435-7.
Rind, D., R. Suozzo, N. K. Balachandran, and M. J. Prather, 1990: Climate change and the middle atmosphere. Part I: The doubled CO2 climate. J. Atmos. Sci., 47, 475−494, https://doi.org/10.1175/1520-0469(1990)047<0475:CCATMA>2.0.CO;2.
Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191−219, https://doi.org/10.1029/1998RG000054.
Robock, A., and J. P. Mao, 1992: Winter warming from large volcanic eruptions. Geophys. Res. Lett., 19, 2405−2408, https://doi.org/10.1029/92GL02627.
Robock, A., and J. P. Mao, 1995: The volcanic signal in surface temperature observations. J. Climate, 8, 1086−1103, https://doi.org/10.1175/1520-0442(1995)008<1086:TVSIST>2.0.CO;2.
Romanowsky, E., and Coauthors, 2019: The role of stratospheric ozone for Arctic-midlatitude linkages. Scientific Reports, 9, 7962, https://doi.org/10.1038/s41598-019-43823-1.
Rosenlof, K. H., 2003: How water enters the stratosphere. Science, 302, 1691−1692, https://doi.org/10.1126/science.1092703.
Rosenlof, K. H., 2018: Changes in water vapor and aerosols and their relation to stratospheric ozone. Comptes Rendus Geoscience, 350, 376−383, https://doi.org/10.1016/j.crte.2018.06.014.
Russell, A., G. Vaughan, and E. G. Norton, 2012: Large-scale potential vorticity anomalies and deep convection. Quart. J. Roy. Meteor. Soc., 138, 1627−1639, https://doi.org/10.1002/qj.1875.
Ruti, P. M., V. Lucarini, A. Dell’Aquila, S. Calmanti, and A. Speranza, 2006: Does the subtropical jet catalyze the midlatitude atmospheric regimes? Geophys. Res. Lett., 33, L06814, https://doi.org/10.1029/2005GL024620.
Sakaeda, N., J. Dias, and G. N. Kiladis, 2020: The unique characteristics and potential mechanisms of the MJO-QBO relationship. J. Geophys. Res.: Atmos., 125, e2020JD033196, https://doi.org/10.1029/2020JD033196.
Scaife, A. A., and Coauthors, 2012: Climate change projections and stratosphere–troposphere interaction. Climate Dyn., 38, 2089−2097, https://doi.org/10.1007/s00382-011-1080-7.
Scaife, A. A., and Coauthors, 2016: Seasonal winter forecasts and the stratosphere. Atmospheric Science Letters, 17, 51−56, https://doi.org/10.1002/asl.598.
Schirber, S., E. Manzini, T. Krismer, and M. Giorgetta, 2015: The quasi-biennial oscillation in a warmer climate: Sensitivity to different gravity wave parameterizations. Climate Dyn., 45, 825−836, https://doi.org/10.1007/s00382-014-2314-2.
Schmidt, A., and Coauthors, 2018: Volcanic radiative forcing from 1979 to 2015. J. Geophys. Res.: Atmos., 123, 12 491−12 508, https://doi.org/10.1029/2018JD028776.
Schoeberl, M. R., 1978: Stratospheric warmings: Observations and theory. Rev. Geophys., 16, 521−538, https://doi.org/10.1029/RG016i004p00521.
Seviour, W. J. M., 2017: Weakening and shift of the Arctic stratospheric polar vortex: Internal variability or forced response? Geophys. Res. Lett., 44, 3365−3373, https://doi.org/10.1002/2017GL073071.
Seviour, W. J. M., and Coauthors, 2019: The southern ocean sea surface temperature response to ozone depletion: A multimodel comparison. J. Climate, 32, 5107−5121, https://doi.org/10.1175/JCLI-D-19-0109.1.
Shepherd, T. G., 2008: Dynamics, stratospheric ozone, and climate change. Atmosphere-Ocean, 46, 117−138, https://doi.org/10.3137/ao.460106.
Shepherd, T. G., and C. McLandress, 2011: A robust mechanism for strengthening of the Brewer–Dobson circulation in response to climate change: Critical-layer control of subtropical wave breaking. J. Atmos. Sci., 68, 784−797, https://doi.org/10.1175/2010JAS3608.1.
Sherwood, S. C., and A. E. Dessler, 2000: On the control of stratospheric humidity. Geophys. Res. Lett., 27, 2513−2516, https://doi.org/10.1029/2000GL011438.
Sigmond, M., and J. C. Fyfe, 2010: Has the ozone hole contributed to increased Antarctic sea ice extent? Geophys. Res. Lett., 37, L18502, https://doi.org/10.1029/2010GL044301.
Sigmond, M., J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nature Geoscience, 6, 98−102, https://doi.org/10.1038/ngeo1698.
Škerlak, B., M. Sprenger, S. Pfahl, E. Tyrlis, and H. Wernli, 2015: Tropopause folds in ERA-Interim: Global climatology and relation to extreme weather events. J. Geophys. Res.: Atmos., 120, 4860−4877, https://doi.org/10.1002/2014JD022787.
Smith, K. L., and L. M. Polvani, 2014: The surface impacts of Arctic stratospheric ozone anomalies. Environmental Research Letters, 9, 074015, https://doi.org/10.1088/1748-9326/9/7/074015.
Solomon, A., and L. M. Polvani, 2016: Highly significant responses to anthropogenic forcings of the midlatitude jet in the Southern Hemisphere. J. Climate, 29, 3463−3470, https://doi.org/10.1175/JCLI-D-16-0034.1.
Solomon, A., L. M. Polvani, K. L. Smith, and R. P. Abernathey, 2015: The impact of ozone depleting substances on the circulation, temperature, and salinity of the Southern Ocean: An attribution study with CESM1(WACCM). Geophys. Res. Lett., 42, 5547−5555, https://doi.org/10.1002/2015GL064744.
Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G.-K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 1219−1223, https://doi.org/10.1126/science.1182488.
Son, S.-W., N. F. Tandon, L. M. Polvani, and D. W. Waugh, 2009: Ozone hole and Southern Hemisphere climate change. Geophys. Res. Lett., 36, L15705, https://doi.org/10.1029/2009GL038671.
Son, S.-W., Gerber, E. P., Perlwitz, J., Polvani, L. M., Gillett, N. P., Seo, K.-H., et al., 2010: Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J. Geophys. Res.: Atmos., 115, D3, https://doi.org/10.1029/2010JD014271.
Son, S.-W., Y. Lim, C. Yoo, H. H. Hendon, and J. Kim, 2017: Stratospheric control of the Madden–Julian oscillation. J. Climate, 30, 1909−1922, https://doi.org/10.1175/JCLI-D-16-0620.1.
SPARC, 2022: SPARC Reanalysis Intercomparison Project (S-RIP) Final Report. Masatomo Fujiwara, Gloria L. Manney, Lesley J. Gray, and Jonathon S. Wright (Eds.), SPARC Report No. 10, WCRP-6/2021, doi: 10.17874/800dee57d13, available online at www.sparc-climate.org/publications/sparc-reports.
Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895−899, https://doi.org/10.1126/science.1069270.
Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15, 1421−1428, https://doi.org/10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2.
Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geoscience, 4, 741−749, https://doi.org/10.1038/ngeo1296.
Thompson, D. W. J., and Coauthors, 2012: The mystery of recent stratospheric temperature trends. Nature, 491, 692−697, https://doi.org/10.1038/nature11579.
Tian, W. S., and M. P. Chipperfield, 2005: A new coupled chemistry-climate model for the stratosphere: The importance of coupling for future O3-Climate predictions. Quart. J. Roy. Meteor. Soc., 131(605), 281−303, https://doi.org/10.1256/qj.04.05.
Tian, W. S., and M. P. Chipperfield, 2006: Stratospheric water vapor trends in a coupled chemistry-climate model. Geophys. Res. Lett., 33, L06819, https://doi.org/10.1029/2005GL024675.
Tian, W. S., M. P. Chipperfield, and D. R. Lü, 2009: Impact of increasing stratospheric water vapor on ozone depletion and temperature change. Adv. Atmos. Sci., 26, 423−437, https://doi.org/10.1007/s00376-009-0423-3.
Tian, W. S., M. P. Chipperfield, L. J. Gray, and J. M. Zawodny, 2006: Quasi-biennial oscillation and tracer distributions in a coupled chemistry-climate model. J. Geophys. Res.: Atmos., 111, D20301, https://doi.org/10.1029/2005JD006871.
Tilmes, S., and Coauthors, 2018: Effects of different stratospheric SO2 injection altitudes on stratospheric chemistry and dynamics. J. Geophys. Res.: Atmos., 123, 4654−4673, https://doi.org/10.1002/2017JD028146.
Trenberth, K. E., and A. G. Dai, 2007: Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys. Res. Lett., 34, L15702, https://doi.org/10.1029/2007GL030524.
Turner, J., and Coauthors, 2009: Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett., 36, L08502, https://doi.org/10.1029/2009GL037524.
Vernier, J.-P., and Coauthors, 2011: Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade. Geophys. Res. Lett., 38, L12807, https://doi.org/10.1029/2011GL047563.
Vogel, B., T. Feck, and J.-U. Grooß, 2011: Impact of stratospheric water vapor enhancements caused by CH4 and H2O increase on polar ozone loss. J. Geophys. Res.: Atmos., 116, D05301, https://doi.org/10.1029/2010JD014234.
von der Gathen, P., R. Kivi, I. Wohltmann, R. J. Salawitch, and M. Rex, 2021: Climate change favours large seasonal loss of Arctic ozone. Nature Communications, 12, 3886, https://doi.org/10.1038/s41467-021-24089-6.
Wallace, J. M., and V. E. Kousky, 1968: Observational evidence of kelvin waves in the tropical stratosphere. J. Atmos. Sci., 25, 900−907, https://doi.org/10.1175/1520-0469(1968)025<0900:OEOKWI>2.0.CO;2.
Wang, L., and W. Chen, 2010: Downward Arctic Oscillation signal associated with moderate weak stratospheric polar vortex and the cold December 2009. Geophys. Res. Lett., 37, L09707, https://doi.org/10.1029/2010GL042659.
Wang, L., L. Wang, W. Chen, and J. L. Huangfu, 2021: Modulation of winter precipitation associated with tropical cyclone of the western North Pacific by the stratospheric Quasi-Biennial oscillation. Environ. Res. Lett., 16, 054004, https://doi.org/10.1088/1748-9326/abf3dd.
Wang, T., W. S. Tian, J. K. Zhang, M. Xu, T. Lian, D. Z. Hu, and K. Qie, 2022: Surface ocean current variations in the North Pacific related to Arctic stratospheric ozone. Climate Dyn., 59, 3087−3111, https://doi.org/10.1007/s00382-022-06271-8.
Wang, W., W. Tian, S. Dhomse, F. Xie, J. Shu, and J. Austin, 2014: Stratospheric ozone depletion from future nitrous oxide increases. Atmospheric Chemistry and Physics, 14, 12 967−12 982, https://doi.org/10.5194/acp-14-12967-2014.
Wang, Y. W., and Y. Huang, 2020: Stratospheric radiative feedback limited by the tropospheric influence in global warming. Climate Dyn., 55, 2343−2350, https://doi.org/10.1007/s00382-020-05390-4.
Wang, T., H. L. Liu, and W. S. Tian, 2023: Simulation of the Seasonal Variation of Mesospheric Zonal Wind Reversal with Anisotropic Gravity Waves. ESS Open Archive. March 06, 2023, https://doi.org/10.22541/essoar.167810265.51636031/v1.
Wernli, H., S. Dirren, M. A. Liniger, and M. Zillig, 2002: Dynamical aspects of the life cycle of the winter storm ‘Lothar’ (24−26 December 1999). Quart. J. Roy. Meteor. Soc., 128, 405−429, https://doi.org/10.1256/003590002321042036.
Wittman, M. A. H., A. J. Charlton, and L. M. Polvani, 2007: The effect of lower stratospheric shear on baroclinic instability. J. Atmos. Sci., 64, 479−496, https://doi.org/10.1175/JAS3828.1.
WMO, 2011: Scientific Assessment of Ozone Depletion: 2010, Chapter 2 - Stratospheric Ozone and Surface Ultraviolet Radiation. World Meteorological Organization, Geneva, Switzerland. Douglass, A., Fioletov, V., Godin-Beekmann, S., Müller, R., Stolarski, R. S., Webb, A., et al. [Available online from https://orbi.uliege.be/handle/2268/163132]
WMO, United Nations Environment Programme (UNEP), National Oceanic and Atmospheric Administration (NOAA), National Aeronautics and Space Administration (NASA), European Commission. 2022: Scientific Assessment of Ozone Depletion: 2022 - Executive Summary. WMO, UNEP, NOAA, NASA, European Commission. [Available online from https://library.wmo.int/index.php?lvl=notice_display&id=22164#.ZArmU-xBzAM]
Xia, Y., Y. Huang, and Y. Y. Hu, 2018: On the climate impacts of upper tropospheric and lower stratospheric ozone. J. Geophys. Res.: Atmos., 123, 730−739, https://doi.org/10.1002/2017JD027398.
Xia, Y., Y. Y. Hu, J. P. Liu, Y. Huang, F. Xie, and J. T. Lin, 2020: Stratospheric ozone-induced cloud radiative effects on Antarctic sea ice. Adv. Atmos. Sci., 37, 505−514, https://doi.org/10.1007/s00376-019-8251-6.
Xie, F., J. K. Zhang, W. J. Sang, Y. Li, Y. L. Qi, C. Sun, Y. Li, and J. C. Shu, 2017: Delayed effect of Arctic stratospheric ozone on tropical rainfall. Atmospheric Science Letters, 18, 409−416, https://doi.org/10.1002/asl.783.
Xie, F., and Coauthors, 2016: A connection from Arctic stratospheric ozone to El Niño-Southern oscillation. Environmental Research Letters, 11, 124026, https://doi.org/10.1088/1748-9326/11/12/124026.
Xie, F., and Coauthors, 2018: An advanced impact of Arctic stratospheric ozone changes on spring precipitation in China. Climate Dyn., 51, 4029−4041, https://doi.org/10.1007/s00382-018-4402-1.
Xu, M., W. S. Tian, J. K. Zhang, J. A. Screen, J. L. Huang, K. Qie, and T. Wang, 2021: Distinct tropospheric and stratospheric mechanisms linking historical Barents-Kara sea-ice loss and late winter Eurasian temperature variability. Geophys. Res. Lett., 48, e2021GL095262, https://doi.org/10.1029/2021GL095262.
Yang, L. S., Y. J. Gao, C. C. Gao, and F. Liu, 2022: Climate responses to Tambora-Size volcanic eruption and the impact of warming climate. Geophys. Res. Lett., 49, e2021GL097477, https://doi.org/10.1029/2021GL097477.
Yoo, C., and S.-W. Son, 2016: Modulation of the boreal wintertime Madden-Julian oscillation by the stratospheric quasi-biennial oscillation. Geophys. Res. Lett., 43, 1392−1398, https://doi.org/10.1002/2016GL067762.
Yu, P. F., D. M. Murphy, R. W. Portmann, O. B. Toon, K. D. Froyd, A. W. Rollins, R. S. Gao, and K. H. Rosenlof, 2016: Radiative forcing from anthropogenic sulfur and organic emissions reaching the stratosphere. Geophys. Res. Lett., 43, 9361−9367, https://doi.org/10.1002/2016GL070153.
Yu, Y. Y., and R. C. Ren, 2019: Understanding the variation of stratosphere–troposphere coupling during stratospheric northern annular mode events from a mass circulation perspective. Climate Dyn., 53, 5141−5164, https://doi.org/10.1007/s00382-019-04675-7.
Yu, Y. Y., R. C. Ren, J. G. Hu, and G. X. Wu, 2014: A mass budget analysis on the interannual variability of the polar surface pressure in the winter season. J. Atmos. Sci., 71, 3539−3553, https://doi.org/10.1175/JAS-D-13-0365.1.
Yu, Y. Y., M. Cai, R. C. Ren, and H. M. van den Dool, 2015: Relationship between warm airmass transport into the upper polar atmosphere and cold air outbreaks in winter. J. Atmos. Sci., 72, 349−368, https://doi.org/10.1175/JAS-D-14-0111.1.
Yu, Y. Y., M. Cai, C. H. Shi, and R. C. Ren, 2018: On the linkage among strong stratospheric mass circulation, stratospheric sudden warming, and cold weather events. Mon. Wea. Rev., 146, 2717−2739, https://doi.org/10.1175/MWR-D-18-0110.1.
Yue, J., J. Russell III, Q. Gan, T. Wang, P. P. Rong, R. Garcia, and M. Mlynczak, 2019: Increasing water vapor in the stratosphere and mesosphere after 2002. Geophys. Res. Lett., 46, 13 452−13 460, https://doi.org/10.1029/2019GL084973.
Zambri, B., S. Solomon, D. W. J. Thompson, and Q. Fu, 2021: Emergence of Southern Hemisphere stratospheric circulation changes in response to ozone recovery. Nature Geoscience, 14, 638−644, https://doi.org/10.1038/s41561-021-00803-3.
Zhang, C. D., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.
Zhang, J. K., W. S. Tian, M. P. Chipperfield, F. Xie, and J. L. Huang, 2016: Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nature Climate Change, 6, 1094−1099, https://doi.org/10.1038/nclimate3136.
Zhang, J. K., W. S. Tian, F. Xie, J. A. Pyle, J. Keeble, and T. Wang, 2020a: The influence of zonally asymmetric stratospheric ozone changes on the Arctic polar vortex shift. J. Climate, 33, 4641−4658, https://doi.org/10.1175/JCLI-D-19-0647.1.
Zhang, J. K., F. Xie, Z. C. Ma, C. Y. Zhang, M. Xu, T. Wang, and R. H. Zhang, 2019a: Seasonal evolution of the Quasi-Biennial Oscillation impact on the Northern Hemisphere polar vortex in winter. J. Geophys. Res.: Atmos., 124, 12 568−12 586, https://doi.org/10.1029/2019JD030966.
Zhang, J. K., and Coauthors, 2018: Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift. Nature Communications, 9, 206, https://doi.org/10.1038/s41467-017-02565-2.
Zhang, J. K., and Coauthors, 2022: Responses of Arctic sea ice to stratospheric ozone depletion. Science Bulletin, 67, 1182−1190, https://doi.org/10.1016/j.scib.2022.03.015.
Zhang, R. H., W. S. Tian, and T. Wang, 2020b: Role of the quasi-biennial oscillation in the downward extension of stratospheric northern annular mode anomalies. Climate Dyn., 55, 595−612, https://doi.org/10.1007/s00382-020-05285-4.
Zhang, R. H., W. S. Tian, J. K. Zhang, J. L. Huang, F. Xie, and M. Xu, 2019b: The corresponding tropospheric environments during downward-extending and nondownward-extending events of stratospheric northern annular mode anomalies. J. Climate, 32, 1857−1873, https://doi.org/10.1175/JCLI-D-18-0574.1.
Zhang, S. Y., and W. S. Tian, 2019: The effects of stratospheric meridional circulation on surface pressure and tropospheric meridional circulation. Climate Dyn., 53, 6961−6977, https://doi.org/10.1007/s00382-019-04968-x.
Zhao, S. Y., J. K. Zhang, C. Y. Zhang, M. Xu, J. Keeble, Z. Wang, and X. F. Xia, 2022: Evaluating long-term variability of the Arctic stratospheric polar vortex simulated by CMIP6 models. Remote Sensing, 14, 4701, https://doi.org/10.3390/rs14194701.
Zuev, V. V., and E. Savelieva, 2019: The cause of the spring strengthening of the Antarctic polar vortex. Dynamics of Atmospheres and Oceans, 87, 101097, https://doi.org/10.1016/j.dynatmoce.2019.101097.