Antonelli, P., and Coauthors, 2004: A principal component noise filter for high spectral resolution infrared measurements. J. Geophys. Res.: Atmos., 109, D23102, https://doi.org/10.1029/2004JD004862.
Bai, W. G., P. Zhang, W. J. Zhang, J. Li, 2016: An efficient method for hyper-spectral infrared atmospheric radiation transfer calculation. J. Infrared. Millim. W., 35(1), 99−108, https://doi.org/10.11972/j.ssn.1001-9014.2016.01.017.
Borbas, E. E., S. W. Seemann, H. L. Huang, J. Li, and W. P. Menze, 2005: Global profile training database for satellite regression retrievals with estimates of skin temperature and emissivity. Proc. 14th Int. ATOVS Study Conf., 763−770.
Burrows, C., T. McNally, and D. Coppens, 2021: Progress in the assimilation of GIIRS data at ECMWF. International TOVS Conference (ITSC-23).
Chen, Y., F. Z. Weng, Y. Han, and Q. H. Liu, 2008: Validation of the Community Radiative Transfer Model by using CloudSat data. J. Geophys. Res., 113(D8), https://doi.org/10.1029/2007JD009561.
Chevallier, F., S. Di Michele, and A. P. McNally, 2006: Diverse profile datasets from the ECMWF 91-level short-range forecasts. ECMWF, Rep. No. NWPSAF-EC-TR-010, 14 pp.
Chevallier, F., F. Chéruy, N. A. Scott, and A. Chédin, 1998: A neural network approach for a fast and accurate computation of a longwave radiative budget. J. Appl. Meteorol., 37(11), 1385−1397, https://doi.org/10.1175/1520-0450(1998)037<1385:ANNAFA>2.0.CO;2.
Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spectroscopy and Radiative Transfer, 91, 233−244, https://doi.org/10.1016/j.jqsrt.2004.05.058.
Crevoisier, C., S. Heilliette, A. Chédin, S. Serrar, R. Armante, and N. A. Scott, 2004: Midtropospheric CO2 concentration retrieval from AIRS observations in the tropics. Geophys. Res. Lett., 31(17), https://doi.org/10.1029/2004GL020141.
Di, D., J. Li, W. Han, W. G. Bai, C. Q. Wu, and W. P. Menzel, 2018: Enhancing the fast radiative transfer model for FengYun-4 GIIRS by using local training profiles. J. Geophys. Res.: Atmos., 123(22), 12,583−12,596, https://doi.org/10.1029/2018JD029089.
Dorvlo, A. S. S., J. A. Jervase, and A. Al-Lawati, 2002: Solar radiation estimation using artificial neural networks. Applied Energy, 71(4), 307−319, https://doi.org/10.1016/S0306-2619(02)00016-8.
Duan, M., Q. Min, and D. Lu, 2010: A polarized radiative transfer model based on successive order of scattering. Adv. Atmos. Sci., 27, 891−900, https://doi.org/10.1007/s00376-009-9049-8.
Efremenko, D., A. Doicu, D. Loyola, T. Trautmann, 2014: Optical property dimensionality reduction techniques for accelerated radiative transfer performance: application to remote sensing total ozone retrievals. J. Quant. Spectrosc. Radiat. Trans., 133, 128−135, https://doi.org/10.1016/j.jqsrt.2013.07.023.
Glorot, X., A. Bordes, and Y. Bengio, 2011: Deep sparse rectifier neural networks. Proc.14th Int. Conf. on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 315−323.
Han, Y., P. van Delst, Q. H. Liu, F. Z. Weng, B. H. Yan, R. Treadon, and J. Derber, 2006: JCSDA Community Radiative Transfer Model (CRTM)-Version 1. NOAA Technical Rep. NESDIS 122, 40 pp.
Jordan, M. I., and T. M. Mitchell, 2015: Machine learning: Trends, perspectives, and prospects. Science, 349, 255−260, https://doi.org/10.1126/science.aaa8415.
Kan, W. L., P. M. Dong, Z. Q. Zhang, and S. G. Ding, 2020: Development and application of ARMS fast transmittance model for GIIRS data. Journal of Quantitative Spectroscopy and Radiative Transfer, 251, 107025, https://doi.org/10.1016/j.jqsrt.2020.107025.
Karpowicz, B. M., P. G. Stegmann, B. T. Johnson, H. W. Christophersen, E. J. Hyer, A. Lambert, and E. Simon, 2022: pyCRTM: A python interface for the community radiative transfer model. Journal of Quantitative Spectroscopy and Radiative Transfer, 288, 108263, https://doi.org/10.1016/j.jqsrt.2022.108263.
Le, T. H., C. Liu, B. Yao, V. Natraj, and Y. L. Yung, 2020: Application of machine learning to hyperspectral radiative transfer simulations. Journal of Quantitative Spectroscopy and Radiative Transfer, 246, 106928, https://doi.org/10.1016/j.jqsrt.2020.106928.
Li, J., W. P. Menzel, T. J. Schmit, and J. Schmetz, 2022a: Applications of geostationary hyperspectral infrared sounder observations: Progress, challenges, and future perspectives. Bull. Amer. Meteor. Soc., 103(12), E2733−E2755, https://doi.org/10.1175/BAMS-D-21-0328.1.
Li, J., W. W. Wolf, W. P. Menzel, W. J. Zhang, H.-L. Huang, and T. H. Achtor, 2000: Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation. J. Appl. Meteorol. Climatol., 39(8), 1248−1268, https://doi.org/10.1175/1520-0450(2000)039<1248:GSOTAF>2.0.CO;2.
Li, J., Z. L. Li, P. Wang, T. J. Schmit, W. G. Bai, and R. Atlas, 2017: An efficient radiative transfer model for hyperspectral IR radiance simulation and applications under cloudy-sky conditions. J. Geophys. Res.: Atmos., 122(14), 7600−7613, https://doi.org/10.1002/2016JD026273.
Li, L., Z. Y. Ni, C. L. Qi, L. Yang, and C. P. Han, 2022b: Pre-Launch radiometric calibration of geostationary interferometric infrared sounder on FengYun-4B satellite. Acta Optica Sinica, 42(6), 0630001, https://doi.org/10.3788/AOS202242.0630001. (in Chinese with English abstract
Li, Z. L., and Coauthors, 2018: Value-added impact of geostationary hyperspectral infrared sounders on local severe storm forecasts--Via a quick regional OSSE. Adv. Atmos. Sci., 35(10), 1217−1230, https://doi.org/10.1007/s00376-018-8036-3.
Liang, X. M., and Q. H. Liu, 2020: Applying deep learning to clear-sky radiance simulation for VIIRS with community radiative transfer model−Part 2: Model architecture and assessment. Remote Sensing, 12(22), 3825, https://doi.org/10.3390/rs12223825.
Liou, K. N., 1992: Radiation and Cloud Processes in the Atmosphere. Theory, Observation, and Modeling. Oxford University Press.
Liou, K. N., 2002: An Introduction to Atmospheric Radiation (Vol. 84). Elsevier.
Liu, C., B. Yao, V. Natraj, F. Z. Weng, T. H. Le, R. L. Shia, and Y. L. Yung, 2020: A spectral data compression (SDCOMP) radiative transfer model for high-spectral-resolution radiation simulations. J. Atmos. Sci., 77(6), 2055−2066, https://doi.org/10.1175/JAS-D-19-0238.1.
Liu, X., W. L. Smith, D. K. Zhou, and A. Larar, 2006: Principal component-based radiative transfer model for hyperspectral sensors: Theoretical concept. Appl. Opt., 45(1), 201−209, https://doi.org/10.1364/AO.45.000201.
Liu, X., Q. G. Yang, H. Li, Z. H. Jin, W. Wu, S. Kizer, D. K. Zhou, and P. Yang, 2016: Development of a fast and accurate PCRTM radiative transfer model in the solar spectral region. Appl. Opt., 55(29), 8236−8247, https://doi.org/10.1364/AO.55.008236.
Matricardi, M., 2008: The generation of RTTOV regression coefficients for IASI and AIRS using a new profile training set and a new line-by-line database. ECMWF Technical Memoranda, Reading, https://doi.org/10.21957/59u3oc9es.
Matricardi, M., 2010: A principal component based version of the RTTOV fast radiative transfer model. Quart. J. Roy. Meteor. Soc., 136(652), 1823−1835, https://doi.org/10.1002/qj.680.
McMillin, L. M., L. J. Crone, and T. J. Kleespies, 1995: Atmospheric transmittance of an absorbing gas. 5. Improvements to the OPTRAN approach. Appl. Opt., 34(36), 8396−8399, https://doi.org/10.1364/AO.34.008396.
Menzel, W. P., T. J. Schmit, P. Zhang, and J. Li, 2018: Satellite-based atmospheric infrared sounder development and applications. Bull. Amer. Meteor. Soc., 99(3), 583−603, https://doi.org/10.1175/BAMS-D-16-0293.1.
Moncet, J. L., G. Uymin, A. E. Lipton, and H. E. Snell, 2008: Infrared radiance modeling by optimal spectral sampling. J. Atmos. Sci., 65(12), 3917−3934, https://doi.org/10.1175/2008JAS2711.1.
Natraj, V., X. Jiang, R.-L. Shia, X. L. Huang, J. S. Margolis, and Y. L. Yung, 2005: Application of principal component analysis to high spectral resolution radiative transfer: A case study of the O2 A band. Journal of Quantitative Spectroscopy and Radiative Transfer, 95(4), 539−556, https://doi.org/10.1016/j.jqsrt.2004.12.024.
Poostchi, M., K. Silamut, R. J. Maude, S. Jaeger, and G. Thoma, 2018: Image analysis and machine learning for detecting malaria. Translational Research, 194, 36−55, https://doi.org/10.1016/j.trsl.2017.12.004.
Rothman, L. S., and Coauthors, 2013: The HITRAN2012 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 130, 4−50, https://doi.org/10.1016/j.jqsrt.2013.07.002.
Saunders, R., and Coauthors, 2018: An update on the RTTOV fast radiative transfer model (currently at version 12). Geoscientific Model Development, 11(7), 2717−2737, https://doi.org/10.5194/gmd-11-2717-2018.
Schmetz, J., 2021: Good things need time: Progress with the first hyperspectral sounder in geostationary orbit. Geophy. Res. Lett., 48(21), e2021GL096207, https://doi.org/10.1029/2021GL096207.
Shi, G. Y., 1998: On the k-distribution and correlated k-distribution models in the atmospheric radiation calculations. Scientia Atmospherica Sinica, 22(4), 659−676, https://doi.org/10.3878/j.issn.1006-9895.1998.04.25. (in Chinese with English abstract
Stegmann, P. G., B. Johnson, I. Moradi, B. Karpowicz, and W. McCarty, 2022: A deep learning approach to fast radiative transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 280, 108088, https://doi.org/10.1016/j.jqsrt.2022.108088.
Takenaka, H., T. Y. Nakajima, A. Higurashi, A. Higuchi, T. Takamura, R. T. Pinker, and T. Nakajima, 2011: Estimation of solar radiation using a neural network based on radiative transfer. J. Geophys. Res.: Atmos., 116(D8), D08215, https://doi.org/10.1029/2009JD013337.
Taylor, M., P. G. Kosmopoulos, S. Kazadzis, I. Keramitsoglou, and C. T. Kiranoudis, 2016: Neural network radiative transfer solvers for the generation of high resolution solar irradiance spectra parameterized by cloud and aerosol parameters. Journal of Quantitative Spectroscopy and Radiative Transfer, 168, 176−192, https://doi.org/10.1016/j.jqsrt.2015.08.018.
Ukkonen, P., 2022: Exploring pathways to more accurate machine learning emulation of atmospheric radiative transfer. Journal of Advances in Modeling Earth Systems, 14(4), e2021MS002875, https://doi.org/10.1029/2021MS002875.
Wang, C. J., B. S. He, and M. F. Modest, 2019: Full-spectrum correlated-k-distribution look-up table for radiative transfer in nonhomogeneous participating media with gas-particle mixtures. International Journal of Heat and Mass Transfer, 137, 1053−1063, https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.149.
Wang, C. X., P. Yang, and X. Liu, 2015: A high-spectral-resolution radiative transfer model for simulating multilayered clouds and aerosols in the infrared spectral region. J. Atmos. Sci., 72(2), 926−942, https://doi.org/10.1175/JAS-D-14-0046.1.
Wang, C. X., P. Yang, S. Platnick, A. K. Heidinger, B. A. Baum, T. Greenwald, Z. B. Zhang, and R. E. Holz, 2013: Retrieval of ice cloud properties from AIRS and MODIS observations based on a fast high-spectral-resolution radiative transfer model. J. Appl. Meteorol. Climatol., 52(3), 710−726, https://doi.org/10.1175/JAMC-D-12-020.1.
Yang, J., Z. Q. Zhang, C. Y. Wei, F. Lu, and Q. Guo, 2017: Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Amer. Meteor. Soc., 98(8), 1637−1658, https://doi.org/10.1175/BAMS-D-16-0065.1.
Zeng, Z. C., L. Lee, and C. L. Qi, 2022: Diurnal carbon monoxide observed from a geostationary infrared hyperspectral sounder: First result from GIIRS onboard FY-4B. Atmospheric Measurement Techniques Discussions, https://doi.org/10.5194/amt-2022-305.
Zeng, Z. C., L. Lee, and C. L. Qi, 2023: Optimal estimation retrieval of tropospheric ammonia from the Geostationary Interferometric Infrared Sounder onboard FengYun-4B. Atmospheric Measurement Techniques Discussions, https://doi.org/10.5194/amt-2023-12.
Zhang, H., and G. Y. Shi, 2000: A fast and efficient Line-By-Line calculation method for atmospheric absorption. Chinese Journal of Atmospheric Sciences, 24(1), 111−121, https://doi.org/10.3878/j.issn.1006-9895.2000.01.12. (in Chinese with English abstract
Zhang, H., G. Y. Shi, and Y. Liu, 2005: A comparison between the two line-by-line integration algorithms. Chinese Journal of Atmospheric Sciences, 29(4), 581−593, https://doi.org/10.3878/j.issn.1006-9895.2005.04.09. (in Chinese with English abstract
Zhang, J., Z. L. Li, J. Li, and J. L. Li, 2014: Ensemble retrieval of atmospheric temperature profiles from AIRS. Adv. Atmos. Sci., 31, 559−569, https://doi.org/10.1007/s00376-013-3094-z.
Zhang, K., C. Q. Wu, and J. Li, 2016: Retrieval of atmospheric temperature and moisture vertical profiles from satellite advanced infrared sounder radiances with a new regularization parameter selecting method. J. Meteor. Res., 30(3), 356−370, https://doi.org/10.1007/s13351-016-6025-y.
Zhou, Y., C. J. Wang, and T. Ren, 2020: A machine learning based efficient and compact full-spectrum correlated k-distribution model. Journal of Quantitative Spectroscopy and Radiative Transfer, 254, 107199, https://doi.org/10.1016/j.jqsrt.2020.107199.