Arias, P., J. Rivera, and A. Aorensson, 2023: Vulnerability and high temperatures exacerbate impacts of ongoing drought in Central South America. World Weather Attribution (WWA). [Available online at https://www.worldweatherattribution.org/wp-content/uploads/WWA-Argentina-Uruguay-drought-Scientific-Report.pdf.]
Ballester, J., and Coauthors, 2023: Heat-related mortality in Europe during the summer of 2022. Nature Medicine, 29, 1857−1866, https://doi.org/10.1038/s41591-023-02419-z.
Chan, S. C., S. K. Behera, and T. Yamagata, 2018: Indian Ocean Dipole influence on South American rainfall. Geophys. Res. Lett., 35, L14S12, https://doi.org/10.1029/2008GL034204.
Chen, R. D., and X. Q. Li, 2023: Causes of the persistent merging of the western North Pacific subtropical high and the Iran high during late July 2022. Climate Dyn., 61, 2285−2297, https://doi.org/10.1007/s00382-023-06678-x.
Christidis, N., G. S. Jones, and P. A. Stott, 2015: Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nature Climate Change, 5, 46−50, https://doi.org/10.1038/nclimate2468.
Christidis, N., M. McCarthy, and P. A. Stott, 2020: The increasing likelihood of temperatures above 30 to 40°C in the United Kingdom. Nature Communications, 11, 3093, https://doi.org/10.1038/s41467-020-16834-0.
Ciavarella A., Christidis N., Andrews M., 2018: Upgrade of the HadGEM3-A based attribution system to high resolution and a new validation framework for probabilistic event attribution. Weather and Climate Extremes. 20, 9−32. https://doi.org/10.1016/j.wace.2018.03.003.
Copernicus Climate Change Service (C3S), 2022: European State of the Climate. Copernicus: Climate Change Service. [Available online at https://climate.copernicus.eu/ESOTC.]
Coumou, D., G. Di Capua, S. Vavrus, L. Wang, and S. Wang, 2018: The influence of Arctic amplification on mid-latitude summer circulation. Nature Communications, 9, 2959, https://doi.org/10.1038/s41467-018-05256-8.
Famine Early Warning Systems Network (FEWS NET), 2023: Horn of Africa Acute Food Insecurity. [Available online at https://fews.net/east-africa/acute-food-insecurity-january-2022-january-2023.]
Faranda, D., S. Pascale, and B. Bulut, 2023: Persistent anticyclonic conditions and climate change exacerbated the exceptional 2022 European-Mediterranean drought. Environmental Research Letters, 18, 034030, https://doi.org/10.1088/1748-9326/acbc37.
Funk, C., A. H. Fink, L. Harrison, Z. Segele, H. S. Endris, G. Galu, D. Korecha, and S. E. Nicholson, 2023: Frequent but predictable droughts in East Africa driven by a walker circulation intensification. ESS Open Archive, in press, [Available online at https://d197for5662m48.cloudfront.net/documents/publicationstatus/127303/preprint_pdf/57e8c28df7f47b8d3cc8899cccd4447a.pdf.]
European Commission, Joint Research Centre, Naumann, G., Podestá, G., Marengo, J. and Coauthors, 2023: Extreme and long-term drought in the La Plata Basin – Event evolution and impact assessment until September 2022 – A joint report from EC-JRC, CEMADEN, SISSA and WMO, Publications Office of the European Union. [Available onlin at https://data.europa.eu/doi/10.2760/62557.]
Harris, I., T. J. Osborn, P. Jones, and D. Lister, 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.
Hausfather, Z., 2023: State of the Climate: How the World Warmed in 2022. Carbon Brief. [Available onilne at https://www.carbonbrief.org/state-of-the-climate-how-the-world-warmed-in-2022/.]
He, C., T. J. Zhou, L. X. Zhang, X. L. Chen, and W. X. Zhang, 2023: Extremely hot East Asia and flooding western South Asia in the summer of 2022 tied to reversed flow over Tibetan Plateau. Climate Dyn., 61, 2103−2119, https://doi.org/10.1007/s00382-023-06669-y.
Herrera-Lormendez, P., H. Douville, and J. Matschullat, 2023. European summer synoptic circulations and their observed 2022 and projected influence on hot and dry extremes. Authorea, in press, https://doi.org/10.22541/essoar.168500316.65791766/v1.
Hu, S., T. J. Zhou, B. Wu, and X. L. Chen, 2023: Seasonal prediction of the record-breaking northward shift of the Western Pacific subtropical high in July 2021. Adv. Atmos. Sci., 40, 410−427, https://doi.org/10.1007/s00376-022-2151-x.
Li, L., Dong, L., Xie, J., Tang, Y., Xie, F., Guo, Z., et al. 2020: The GAMIL3: Model description and evaluation. J. Geophys. Res. Atmos. 125. https://doi:10.1029/2020JD032574" target="_blank">10.1029/2020JD032574">https://doi:10.1029/2020JD032574.
Kimutai, J., and Coauthors, 2023: Human-induced climate change increased drought severity in Horn of Africa. Imperial College London, https://doi.org/10.25561/103482.
Lee, J.-Y., J. Marotzke, G. Bala, and L. Cao, 2021: Future global climate: scenario-based projections and near-term information. Climate Change 2021: The Physical Science Basis. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte et al., Eds., Cambridge University Press, https://doi.org/10.1017/9781009157896.006.
Liu, B. Q., C. W. Zhu, S. M. Ma, Y. H. Yan, and N. Jiang, 2023: Subseasonal processes of triple extreme heatwaves over the Yangtze River Valley in 2022. Weather and Climate Extremes, 40, 100572, https://doi.org/10.1016/j.wace.2023.100572.
Lu, R. Y., K. Xu, R. D. Chen, W. Chen, F. Li, and C. Y. Lv, 2023: Heat waves in summer 2022 and increasing concern regarding heat waves in general. Atmos. Ocean. Sci. Lett., 16, 100290, https://doi.org/10.1016/j.aosl.2022.100290.
Mankin, J. S., I. Simpson, A. Hoell, R. Fu, J. Lisonbee, A. Sheffield, and D. Barrie, 2021: Drought Task Force Report on the 2020–2021 Southwestern U.S. Drought. https://doi.org/10.25923/j0rj-an85.
Martens, B., and Coauthors, 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development, 10, 1903−1925, https://doi.org/10.5194/gmd-10-1903-2017.
NOAA National Centers for Environmental Information, 2023: Monthly Drought Report for Annual 2022, published online January 2023. [Available online at https://www.ncei.noaa.gov/access/monitoring/monthly-report/drought/202213.]
Olonscheck, D., A. P. Schurer, L. Lücke, and G. C. Hegerl, 2021: Large-scale emergence of regional changes in year-to-year temperature variability by the end of the 21st century. Nature Communications, 12, 7237, https://doi.org/10.1038/s41467-021-27515-x.
Petoukhov, V., S. Rahmstorf, S. Petri, and H. J. Schellnhuber, 2013: Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proceedings of the National Academy of Sciences of the United States of America, 110(14), 5336−5341, https://doi.org/10.1073/pnas.1222000110.
Pu, B., R. Fu, R. E. Dickinson, and D. N. Fernando, 2016: Why do summer droughts in the Southern Great Plains occur in some La Niña years but not others? J. Geophys. Res., 121, 1120−1137, https://doi.org/10.1002/2015JD023508.
Red Cross Red Crescent Climate Centre (RCCC), 2022: WMO: Third consecutive year of La Niña could intensify Horn of Africa drought. Climate Centre.Z [Available online at https://www.climatecentre.org/9149/wmo-third-consecutive-year-of-la-nina-could-aggravate-horn-of-africa-drought/.]
Rehfeld, K., R. Hébert, J. M. Lora, M. Lofverstrom, and C. M. Brierley, 2020: Variability of surface climate in simulations of past and future. Earth System Dynamics, 11, 447−468, https://doi.org/10.5194/esd-11-447-2020.
Schumacher, D. L., and Coauthors, 2022: High temperatures exacerbated by climate change made 2022 Northern Hemisphere soil moisture droughts more likely. World Weather Attribution (WWA). [Available online at https://www.worldweatherattribution.org/wp-content/uploads/WCE-NH-drought-scientific-report.pdf.]
Stone, D. A., and Coauthors, 2019: Experiment design of the international CLIVAR C20C+ detection and attribution project. Weather and Climate Extremes, 24, 100206, https://doi.org/10.1016/j.wace.2019.100206.
Stott, P. A., D. A. Stone, and M. R. Allen, 2004: Human contribution to the European heatwave of 2003. Nature, 432, 610−614, https://doi.org/10.1038/nature03089.
Tang, S. K., and Coauthors, 2023: Linkages of unprecedented 2022 Yangtze River Valley heatwaves to Pakistan flood and triple-dip La Niña. npj Climate and Atmospheric Science, 6(1), 44, https://doi.org/10.1038/s41612-023-00386-3.
Taschetto, A. S., and T. Ambrizzi, 2012: Can Indian Ocean SST anomalies influence South American rainfall. Climate Dyn., 38, 1615−1628, https://doi.org/10.1007/s00382-011-1165-3.
The United Nations Environment Programme (UNEP), 2023: Shrinking glaciers upend lives across South America. UNEP. [Available online at https://www.unep.org/news-and-stories/story/shrinking-glaciers-upend-lives-across-south-america.]
Toreti, A., and Coauthors, 2022: Drought in Europe August 2022. Publications Office of the European Union, Luxembourg, https://doi.org/10.2760/264241.
Vera, C. S., and M. Osman, 2018: Activity of the Southern Annular Mode during 2015–2016 El Niño event and its impact on Southern Hemisphere climate anomalies. International Journal of Climatology, 38, e1288−e1295, https://doi.org/10.1002/joc.5419.
Wang, Z. Q., H. L. Luo, and S. Yang, 2023: Different mechanisms for the extremely hot central-eastern China in July–August 2022 from a Eurasian large-scale circulation perspective. Environmental Research Letters, 18(2), 024023, https://doi.org/10.1088/1748-9326/acb3e5.
Williams, A. P., B. I. Cook, and J. E. Smerdon, 2022: Rapid intensification of the emerging southwestern North American megadrought in 2020–2021. Nature Climate Change, 12, 232−234, https://doi.org/10.1038/s41558-022-01290-z.
World Meteorological Organization(WMO), 2022a: WMO State of the Global Climate report 2022. [Available online at https://library.wmo.int/viewer/66214/download?file=Statement_2022.pdf&type=pdf.]
World Meteorological Organization (WMO), 2022b: Provisional State of the Global Climate 2022. [Available online at https://library.wmo.int/records/item/56335-wmo-provisional-state-of-the-global-climate-2022#.Y2Z_6uzMJR4.]
Xie, Z. H., and Coauthors, 2018: A high-resolution land model with groundwater lateral flow, water use, and soil freeze-thaw front dynamics and its applications in an Endorheic basin. J. Geophys. Res., 123, 7204−7222, https://doi.org/10.1029/2018JD028369.
Ye, Y. B. and Coauthors, 2022: Attribution of Extreme Heat Waves over China in Summer 2022. [Available onilne at https://mp.weixin.qq.com/s/oZfP0TizhDKKlSDPZZiH_Q.] (in Chinese)
Yuan, Y. F., Z. Liao, B. Q. Zhou, and P. M. Zhai, 2023: Unprecedented hot extremes observed in city clusters in China during Summer 2022. Journal of Meteorological Research, 37(2), 141−148, https://doi.org/10.1007/s13351-023-2184-9.
Zachariah, M., and Coauthors, 2022: Without human-caused climate change temperatures of 40°C in the UK would have been extremely unlikely. World Weather Attribution (WWA). [Available online at https://www.worldweatherattribution.org/wp-content/uploads/UK-heat-scientific-report.pdf.]
Zhang, D. Q., L. J. Chen, Y. Yuan, J. Q. Zuo, and Z. J. Ke, 2023: Why was the heat wave in the Yangtze River valley abnormally intensified in late summer 2022. Environmental Research Letters, 18(3), 034014, https://doi.org/10.1088/1748-9326/acba30.