Agustí-Panareda, A., A. Beljaars, C. Cardinali, I. Genkova, and C. Thorncroft, 2010: Impacts of assimilating AMMA soundings on ECMWF analyses and forecasts. Wea. Forecasting, 25(4), 1142−1160, https://doi.org/10.1175/2010WAF2222370.1.
Ágústsson, H., H. Ólafsson, M. O. Jonassen, and Ó. Rögnvaldsson, 2014: The impact of assimilating data from a remotely piloted aircraft on simulations of weak-wind orographic flow. Tellus A: Dynamic Meteorology and Oceanography, 66(1), 25421, https://doi.org/10.3402/tellusa.v66.25421.
Atlaskin, E., and T. Vihma, 2012: Evaluation of NWP results for wintertime nocturnal boundary-layer temperatures over Europe and Finland. Quart. J. Roy. Meteorol. Soc., 138(667), 1440−1451, https://doi.org/10.1002/qj.1885.
Båserud, L., J. Reuder, M. O. Jonassen, S. T. Kral, M. B. Paskyabi, and M. Lothon, 2016: Proof of concept for turbulence measurements with the RPAS SUMO during the BLLAST campaign. Atmospheric Measurement Techniques, 9(10), 4901−4913, https://doi.org/10.5194/amt-9-4901-2016.
Bouchard, A., F. Rabier, V. Guidard, and F. Karbou, 2010: Enhancements of satellite data assimilation over Antarctica. Mon. Wea. Rev., 138(6), 2149−2173, https://doi.org/10.1175/2009MWR3071.1.
Boylan, P., J. H. Wang, S. A. Cohn, E. Fetzer, E. S. Maddy, and S. Wong, 2015: Validation of AIRS version 6 temperature profiles and surface-based inversions over Antarctica using Concordiasi dropsonde data. J. Geophys. Res., 120(3), 992−1007, https://doi.org/10.1002/2014JD022551.
Bromwich, D. H., A. J. Monaghan, K. W. Manning, and J. G. Powers, 2005: Real-time forecasting for the Antarctic: An evaluation of the Antarctic Mesoscale Prediction System (AMPS). Mon. Wea. Rev., 133(3), 579−603, https://doi.org/10.1175/MWR-2881.1.
Bromwich, D. H., F. O. Otieno, K. M. Hines, K. W. Manning, and E. Shilo, 2013: Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctic. J. Geophys. Res., 118(2), 274−292, https://doi.org/10.1029/2012JD018139.
Bromwich, D. H., A. B. Wilson, L. S. Bai, G. W. K. Moore, and P. Bauer, 2016: A comparison of the regional Arctic System Reanalysis and the global ERA-Interim Reanalysis for the Arctic. Quart. J. Roy. Meteorol. Soc., 142, 644−658, https://doi.org/10.1002/qj.2527.
Bumbaco, K. A., G. J. Hakim, G. S. Mauger, N. Hryniw, and E. J. Steig, 2014: Evaluating the Antarctic observational network with the Antarctic Mesoscale Prediction System (AMPS). Mon. Wea. Rev., 142(10), 3847−3859, https://doi.org/10.1175/MWR-D-13-00401.1.
Cassano, J. J., 2014: Observations of atmospheric boundary layer temperature profiles with a small unmanned aerial vehicle. Antarctic Science, 26(2), 205−213, https://doi.org/10.1017/S0954102013000539.
Cassano, J. J., M. W. Seefeldt, S. Palo, S. L. Knuth, A. C. Bradley, P. D. Herrman, P. A. Kernebone, and N. J. Logan, 2016: Observations of the atmosphere and surface state over Terra Nova Bay, Antarctica, using unmanned aerial systems. Earth System Science Data, 8(1), 115−126, https://doi.org/10.5194/essd-8-115-2016.
Caumont, O., and Coauthors, 2016: Assimilation of humidity and temperature observations retrieved from ground-based microwave radiometers into a convective-scale NWP model. Quart. J. Roy. Meteorol. Soc., 142(700), 2692−2704, https://doi.org/10.1002/qj.2860.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteorol. Soc., 137(656), 553−597, https://doi.org/10.1002/qj.828.
Derber, J. C., and W. S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 2287−2299, https://doi.org/10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2.
Driemel, A., B. Loose, H. Grobe, R. Sieger, and G. König-Langlo, 2016: 30 years of upper air soundings on board of R/V POLARSTERN. Earth System Science Data, 8(1), 213−220, https://doi.org/10.5194/essd-8-213-2016.
Federico, S., 2013: Implementation of a 3D-Var system for atmospheric profiling data assimilation into the RAMS model: Initial results. Atmospheric Measurement Techniques, 6(12), 3563−3576, https://doi.org/10.5194/amt-6-3563-2013.
Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29(14), 1693, https://doi.org/10.1029/2002GL015311.
Guedj, S., F. Karbou, F. Rabier, and A. Bouchard, 2010: Toward a better modeling of surface emissivity to improve AMSU data assimilation over Antarctica. IEEE Trans. Geosci. Remote Sens., 48(4), 1976−1985, https://doi.org/10.1109/TGRS.2009.2036254.
Hines, K. M., and D. H. Bromwich, 2008: Development and testing of Polar Weather Research and Forecasting (WRF) model. Part I: Greenland ice sheet meteorology. Mon. Wea. Rev., 136(6), 1971−1989, https://doi.org/10.1175/2007MWR2112.1.
Hines, K. M., and D. H. Bromwich, 2017: Simulation of late summer arctic clouds during ASCOS with polar WRF. Mon. Wea. Rev., 145(2), 521−541, https://doi.org/10.1175/MWR-D-16-0079.1.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113(D13), D13103, https://doi.org/10.1029/2008JD009944.
Inoue, J., T. Enomoto, and M. E. Hori, 2013: The impact of radiosonde data over the ice-free Arctic Ocean on the atmospheric circulation in the Northern Hemisphere. Geophys. Res. Lett., 40(5), 864−869, https://doi.org/10.1002/grl.50207.
Inoue, J., A. Yamazaki, J. Ono, K. Dethloff, M. Maturilli, R. Neuber, P. Edwards, and H. Yamaguchi, 2015: Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route. Scientific Reports, 5, 16868, https://doi.org/10.1038/srep16868.
Janjić, Z. I., 2001: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP meso model. NCEP Technical Report 437, 61 pp.
Jonassen, M., and J. Reuder, 2008: Determination of temperature and humidity profiles in the atmospheric boundary layer by fast ascending UAVs. Geophysical Research Abstracts.
Jonassen, M. O., H. Ólafsson, H. Ágústsson, Ó. Rögnvaldsson, and J. Reuder, 2012: Improving high-resolution numerical weather simulations by assimilating data from an unmanned aerial system. Mon. Wea. Rev., 140(11), 3734−3756, https://doi.org/10.1175/MWR-D-11-00344.1.
Jonassen, M. O., P. Tisler, B. Altstädter, A. Scholtz, T. Vihma, A. Lampert, G. König-Langlo, and C. Lüpkes, 2015: Application of remotely piloted aircraft systems in observing the atmospheric boundary layer over Antarctic sea ice in winter. Polar Research, 34, 25651, https://doi.org/10.3402/polar.v34.25651.
Jones, J. M., and Coauthors, 2016: Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Clim. Change, 6(10), 917−926, https://doi.org/10.1038/nclimate3103.
Karbou, F., 2014: The assimilation of observations from the advanced microwave sounding unit over sea ice in the French global numerical weather prediction system. Mon. Wea. Rev., 142(1), 125−140, https://doi.org/10.1175/MWR-D-13-00025.1.
Knupp, K. R., T. Coleman, D. Phillips, R. Ware, D. Cimini, F. Vandenberghe, J. Vivekanandan, and E. Westwater, 2009: Ground-based passive microwave profiling during dynamic weather conditions. J. Atmos. Oceanic Technol., 26(6), 1057−1073, https://doi.org/10.1175/2008JTECHA1150.1.
Knuth, S. L, J. J. Cassano, J. A. Maslanik, P. D. Herrmann, P. A. Kernebone, R. I. Crocker, and N. J. Logan, 2013: Unmanned aircraft system measurements of the atmospheric boundary layer over Terra Nova Bay, Antarctica. Earth System Science Data, 5(1), 57−69, https://doi.org/10.5194/essd-5-57-2013.
König-Langlo, G., 2013a: Meteorological observations during POLARSTERN cruise ANT-XXIX/6(AWECS). Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, https://doi.org/10.1594/PANGAEA.819610.
König-Langlo, G., 2013b: Upper air soundings during POLARSTERN cruise ANT-XXIX/6(AWECS) to the Antarctic in 2013. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, https://doi.org/10.1594/PANGAEA.842810.
Kral, S. T., and Coauthors, 2018: Innovative strategies for observations in the arctic atmospheric boundary layer (ISOBAR)−The Hailuoto 2017 campaign. Atmosphere, 9, 268, https://doi.org/10.3390/atmos9070268.
Lawrence, H., N. Bormann, I. Sandu, J. Day, J. Farnan, and P. Bauer., 2019: Use and impact of arctic observations in the ECMWF numerical weather prediction system. Quart. J. Roy. Meteorol. Society, 145(725), 3432−3454, https://doi.org/10.1002/qj.3628.
Luers, J. K. and Eskridge, R. E., 1998: Use of radiosonde temperature data in climate studies. J. Climate, 11(5), 1002−1019, https://doi.org/10.1175/1520-0442(1998)011<1002:UORTDI>2.0.CO;2.
Mayer, S., 2011: Application and improvement of the Unmanned Aerial System SUMO for atmospheric boundary layer studies. PhD dissertation, University of Bergen, 93 pp.
McGrath, R., T. Semmler, C. Sweeney, and S. Y. Wang, 2006: Impact of balloon drift errors in radiosonde data on climate statistics. J. Climate, 19(14), 3430−3442, https://doi.org/10.1175/JCLI3804.1.
Miloshevich, L. M., A. Paukkunen, H. Vömel, and S. J. Oltmans, 2004: Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements. J. Atmos. Oceanic Technol., 21(9), 1305−1327, https://doi.org/10.1175/1520-0426(2004)021<1305:DAVOAT>2.0.CO;2.
Murphy, D. J., S. P. Alexander, A. R. Klekociuk, P. T. Love, and R. A. Vincent, 2014: Radiosonde observations of gravity waves in the lower stratosphere over Davis, Antarctica. J. Geophys. Res., 119(21), 11973−11996, https://doi.org/10.1002/2014JD022448.
Naakka, T., T. Nygård, M. Tjernström, T. Vihma, R. Pirazzini, and I. M. Brooks, 2019: The impact of radiosounding observations on numerical weather prediction analyses in the Arctic. Geophys. Res. Lett., 46(14), 8527−8535, https://doi.org/10.1029/2019GL083332.
National Weather Service, 2019: Frequently asked question about radiosonde data quality. [Available online from https://www.weather.gov/upperair/FAQ-QC]
Ono, J., J. Inoue, A. Yamazaki, K. Dethloff, and H. Yamaguchi, 2016: The impact of radiosonde data on forecasting sea-ice distribution along the Northern Sea Route during an extremely developed cyclone. Journal of Advances in Modeling Earth Systems, 8(1), 292−303, https://doi.org/10.1002/2015MS000552.
Passner, J. E., S. Kirby, and T. Jameson, 2012: Using real-time weather data from an unmanned aircraft system to support the advanced research version of the weather research and forecast model. No. ARL-TR-5950, Army Research Laboratory, USA, 70 pp.
Powers, J. G., K. W. Manning, D. H. Bromwich, J. J. Cassano, and A. M. Cayette, 2012: A decade of Antarctic science support through AMPS. Bull. Amer. Meteor. Soc., 93(11), 1699−1712, https://doi.org/10.1175/BAMS-D-11-00186.1.
Reuder, J., P. Brisset, M. Jonassen, M. Müller, and S. Mayer, 2009: The small unmanned meteorological observer SUMO: A new tool for atmospheric boundary layer research. Meteorologische Zeitschrift, 18(2), 141−147, https://doi.org/10.1127/0941-2948/2009/0363.
Rintoul, S. R., M. Sparrow, M. Meredith, V. Wadley, K. Speer, E. Hofmann, and K. Alverson, 2012: The Southern Ocean Observing System: Initial Science and Implementation Strategy. Scientific Committee on Antarctic Research, 82 pp.
Sato, K., J. Inoue, A. Yamazaki, J.-H. Kim, M. Maturilli, K. Dethloff, S. R. Hudson, and M. A. Granskog, 2017: Improved forecasts of winter weather extremes over midlatitudes with extra Arctic observations. J. Geophys. Res., 122(2), 775−787, https://doi.org/10.1002/2016JC012197.
Sato, K., J. Inoue, S. P. Alexander, G. McFarquhar, and A. Yamazaki, 2018: Improved reanalysis and prediction of atmospheric fields over the Southern Ocean using campaign-based radiosonde observations. Geophys. Res. Lett., 45(20), 11406−11413, https://doi.org/10.1029/2018GL079037.
Singh, R., C. M. Kishtawal, S. P. Ojha, and P. K. Pal, 2012: Impact of assimilation of Atmospheric InfraRed Sounder (AIRS) radiances and retrievals in the WRF 3D-Var assimilation system. J. Geophys. Res., 117(D11), D11107, https://doi.org/10.1029/2011JD017367.
Soldatenko, S., C. Tingwell, P. Steinle, and B. A. Kelly-Gerreyn, 2018: Assessing the impact of surface and upper-air observations on the forecast skill of the ACCESS numerical weather prediction model over Australia. Atmosphere, 9(1), 23, https://doi.org/10.3390/atmos9010023.
Turner, J., and S. Pendlebury, 2004: The International Antarctic Weather Forecasting Handbook. British Antarctic Survey, Cambridge, United Kingdom, 663 pp.
Wille, J. D., D. H. Bromwich, J. J. Cassano, M. A. Nigro, M. E. Mateling, and M. A. Lazzara, 2017: Evaluation of the AMPS boundary layer simulations on the ross ice shelf, Antarctica, with unmanned aircraft observations. J. Appl. Meteorol. Climatol., 56(8), 2239−2258, https://doi.org/10.1175/JAMC-D-16-0339.1.
Yamazaki, A., J. Inoue, K. Dethloff, M. Maturilli, and G. König-Langlo, 2015: Impact of radiosonde observations on forecasting summertime Arctic cyclone formation. J. Geophys. Res., 120(8), 3249−3273, https://doi.org/10.1002/2014JD022925.
Zeng, J., T. Matsunaga, and H. Mukai, 2010: METEX−A flexible tool for air trajectory calculation. Environmental Modelling & Software, 25(4), 607−608, https://doi.org/10.1016/j.envsoft.2008.10.015.