Basovich, A., 2014: The effect of contaminant drag reduction on the onset and evolution of Langmuir circulations. J. Phys. Oceanogr., 44, 2739−2752, https://doi.org/10.1175/JPO-D-13-0228.1.
Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, https://doi.org/10.1029/2012GL052932.
Craik, A. D. D., 1977: The generation of Langmuir circulations by an instability mechanism. J. Fluid Mech., 81, 209−203, https://doi.org/10.1017/S0022112077001980.
Craik, A. D. D., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73(3), 401−426, https://doi.org/10.1017/S0022112076001420.
D’Asaro, E. A., 2014: Turbulence in the upper-ocean mixed layer. Annual Review of Marine Science, 6, 101−105, https://doi.org/10.1146/annurev-marine-010213-135138.
de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.
Fan, Y. L., and S. M. Griffies, 2014: Impacts of parameterized Langmuir turbulence and nonbreaking wave mixing in global climate simulations. J. Climate, 27, 4752−4775, https://doi.org/10.1175/JCLI-D-13-00583.1.
Furuichi, N., and T. Hibiya, 2015: Assessment of the upper-ocean mixed layer parameterizations using a large eddy simulation model. J. Geophys. Res., 120, 2350−2369, https://doi.org/10.1002/2014JC010665.
Grant, A. L. M., and S. E. Belcher, 2009: Characteristics of Langmuir Turbulence in the ocean mixed layer. J. Phys. Oceanogr., 39, 1871−1887, https://doi.org/10.1175/2009JPO4119.1.
Harcourt, R. R. 2013: A second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr., 43, 673−697,
Harcourt, R. R., 2015: An improved second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr., 45, 84−103, https://doi.org/10.1175/JPO-D-14-0046.1.
Hoecker-Martínez, M. S., W. D. Smyth, and E. D. Skyllingstad, 2016: Oceanic turbulent energy budget using large-eddy simulation of a wind event during DYNAMO. J. Phys. Oceanogr., 46, 827−840, https://doi.org/10.1175/JPO-D-15-0057.1.
Kenyon, K. E., 1969: Stokes drift for random gravity waves. J. Geophys. Res., 74(28), 6991−6994, https://doi.org/10.1029/JC074i028p06991.
Kukulka, T., A. J. Plueddemann, J. H. Trowbridge, and P. P. Sullivan, 2010: Rapid mixed layer deepening by the combination of Langmuir and shear instabilities: A case study. J. Phys. Oceanogr., 40, 2381−2400, https://doi.org/10.1175/2010JPO4403.1.
Kukulka, T., A. J. Plueddemann, and P. P. Sullivan, 2013: Inhibited upper ocean restratification in nonequilibrium swell conditions. Geophys. Res. Lett., 40, 3672−3676, https://doi.org/10.1002/grl.50708.
Langmuir, I., 1938: Surface motion of water induced by wind. Science, 87, 119−123, https://doi.org/10.1126/science.87.2250.119.
Leibovich, S., 1977: Convective instability of stably stratified water in the ocean. J. Fluid Mech., 82, 561−581, https://doi.org/10.1017/S0022112077000846.
Leibovich, S., 1983: The form and dynamics of Langmuir circulations. Annual Review of Fluid Mechanics, 15, 391−427, https://doi.org/10.1146/annurev.fl.15.010183.002135.
Li, M., C. Garrett, and E. Skyllingstad, 2005: A regime diagram for classifying turbulent large eddies in the upper ocean. Deep Sea Research Part I: Oceanographic Research Papers, 52, 259−278, https://doi.org/10.1016/j.dsr.2004.09.004.
Li, M., S. Vagle, and D. M. Farmer, 2009: Large eddy simulations of upper-ocean response to a midlatitude storm and comparison with observations. J. Phys. Oceanogr., 39, 2295−2309, https://doi.org/10.1175/2009JPO4165.1.
Li, Q., and B. Fox-Kemper, 2017: Assessing the effects of Langmuir turbulence on the entrainment buoyancy flux in the ocean surface boundary layer. J. Phys. Oceanogr., 47, 2863−2886, https://doi.org/10.1175/JPO-D-17-0085.1.
Li, Q., B. Fox-Kemper, Ø. Breivik, and A. Webb, 2017: Statistical models of global Langmuir mixing. Ocean Modelling, 113, 95−114, https://doi.org/10.1016/j.ocemod.2017.03.016.
Liang, J.-H., J. C. McWilliams, P. P. Sullivan, and B. Baschek, 2012: Large eddy simulation of the bubbly ocean: New insights on subsurface bubble distribution and bubble-mediated gas transfer. J. Geophy. Res., 117, C04002, https://doi.org/10.1029/2011JC007766.
Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 1722−1735, https://doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2.
McWilliams, J. C., and J. M. Restrepo, 1999: The wave-driven ocean circulation. J. Phys. Oceanogr., 29, 2523−2540, https://doi.org/10.1175/1520-0485(1999)029<2523:TWDOC>2.0.CO;2.
McWilliams, J. C., and P. P. Sullivan, 2000: Vertical mixing by Langmuir circulations. Spill Science & Technology Bulletin, 6, 225−237, https://doi.org/10.1016/S1353-2561(01)00041-X.
McWilliams, J. C., P. P. Sullivan, and C. H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 1−30, https://doi.org/10.1017/S0022112096004375.
McWilliams, J. C., E. Huckle, J.-H. Liang, and P. P. Sullivan, 2012: The wavy Ekman Layer: Langmuir circulations, breaking waves, and Reynolds stress. J. Phys. Oceanogr., 42, 1793−1816, https://doi.org/10.1175/JPO-D-12-07.1.
McWilliams, J. C., E. Huckle, J. H. Liang, and P. P. Sullivan, 2014: Langmuir turbulence in Swell. J. Phys. Oceanogr., 44, 870−890, https://doi.org/10.1175/JPO-D-13-0122.1.
Min, H. S., and Y. Noh, 2004: Influence of the surface heating on Langmuir circulation. J. Phys. Oceanogr., 34, 2630−2641, https://doi.org/10.1175/JPOJPO-2654.1.
Moeng, C. H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 2052−2062, https://doi.org/10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.
Noh, Y., and Y. Choi, 2018: Comments on “Langmuir turbulence and surface heating in the ocean surface boundary layer”. J. Phys. Oceanogr., 48, 455−458, https://doi.org/10.1175/JPO-D-17-0135.1.
Noh, Y., H. S. Min, and S. Raasch, 2004: Large eddy simulation of the ocean mixed layer: The effects of wave breaking and Langmuir Circulation. J. Phys. Oceanogr., 34, 720−735, https://doi.org/10.1175/1520-0485(2004)034<0720:LESOTO>2.0.CO;2.
Noh, Y., G. Goh, S. Raasch, and M. Gryschka, 2009: Formation of a diurnal thermocline in the Ocean Mixed layer simulated by LES. J. Phys. Oceanogr., 39, 1244−1257, https://doi.org/10.1175/2008JPO4032.1.
Noh, Y., G. Goh, S. Raasch, and S. Raasch, 2010: Examination of the mixed layer deepening process during convection using LES. J. Phys. Oceanogr., 40, 2189−2195, https://doi.org/10.1175/2010JPO4277.1.
Noh, Y., G. Goh, and S. Raasch, 2011: Influence of Langmuir circulation on the deepening of the wind-mixed layer. J. Phys. Oceanogr., 41, 472−484, https://doi.org/10.1175/2010JPO4494.1.
Noh, Y., H. Ok, E. Lee, T. Toyoda, and N. Hirose, 2016: Parameterization of Langmuir circulation in the ocean mixed layer model using LES and its application to the OGCM. J. Phys. Oceanogr., 46, 57−78, https://doi.org/10.1175/JPO-D-14-0137.1.
Pearson, B. C., A. L. M. Grant, J. A. Polton, and S. E. Belcher, 2015: Langmuir turbulence and surface heating in the ocean surface boundary layer. J. Phys. Oceanogr., 45, 2897−2911, https://doi.org/10.1175/JPO-D-15-0018.1.
Polton, J. A., and S. E. Belcher, 2007: Langmuir turbulence and deeply penetrating jets in an unstratified mixed layer. J. Geophys. Res., 112, C09020, https://doi.org/10.1029/2007JC004205.
Polton, J. A., D. M. Lewis, and S. E. Belcher, 2005: The role of wave-induced coriolis–stokes forcing on the wind-driven mixed layer. J. Phys. Oceanogr., 35, 444−457, https://doi.org/10.1175/JPO2701.1.
Polton, J. A., J. A. Smith, J. A. MacKinnon, and A. E. Tejada-Martínez, 2008: Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface mixed layer. Geophys. Res. Lett., 35, L13602, https://doi.org/10.1029/2008GL033856.
Skyllingstad, E. D., and D. W. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100(C5), 8501−8522, https://doi.org/10.1029/94JC03202.
Skyllingstad, E. D., W. D. Smyth, J. N. Moum, and H. Wijesekera, 1999: Upper-ocean turbulence during a westerly wind burst: A comparison of large-eddy simulation results and microstructure measurements. J. Phys. Oceanogr., 29, 5−28, https://doi.org/10.1175/1520-0485(1999)029<0005:UOTDAW>2.0.CO;2.
Skyllingstad, E. D., W. D. Smyth, and G. B. Crawford, 2000: Resonant wind-driven mixing in the ocean boundary layer. J. Phys. Oceanogr., 30, 1866−1890, https://doi.org/10.1175/1520-0485(2000)030<1866:RWDMIT>2.0.CO;2.
Smith, J. A., 1998: Evolution of Langmuir circulation during a storm. J. Geophys. Res., 103(C6), 12 649−12 668,
Smyth, R. L., C. Akan, A. Tejada-Martínez, and P. J. Neale, 2017: Quantifying phytoplankton productivity and photoinhibition in the Ross Sea polynya with large eddy simulation of Langmuir circulation. J. Geophys. Res., 122, 5545−5565, https://doi.org/10.1002/2017JC012747.
Smyth, W. D., E. D. Skyllingstad, G. B. Crawford, and H. Wijesekera, 2002: Nonlocal fluxes and Stokes drift effects in the K-profile parameterization. Ocean Dynamics, 52, 104−115, https://doi.org/10.1007/s10236-002-0012-9.
Sullivan, P. P., and J. C. McWilliams, 2019: Langmuir turbulence and filament frontogenesis in the oceanic surface boundary layer. J. Fluid Mech., 879, 512−553, https://doi.org/10.1017/jfm.2019.655.
Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593, 405−452, https://doi.org/10.1017/S002211200700897X.
Sullivan, P. P., L. Romero, J. C. McWilliams, and W. K. Melville, 2012: Transient evolution of Langmuir turbulence in ocean boundary layers driven by hurricane winds and waves. J. Phys. Oceanogr., 42, 1959−1980, https://doi.org/10.1175/JPO-D-12-025.1.
Sutherland, G., K. H. Christensen, and B. Ward, 2014: Evaluating Langmuir turbulence parameterizations in the ocean surface boundary layer. J. Geophys. Res., 119, 1899−1910, https://doi.org/10.1002/2013JC009537.
Thorpe, S. A., 2004: Langmuir circulation. Annual Review of Fluid Mechanics, 36, 55−79, https://doi.org/10.1146/annurev.fluid.36.052203.071431.
van Roekel, L. P., B. Fox-Kemper, P. P. Sullivan, P. E. Hamlington, and S. R. Haney, 2012: The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res., 117, C05001, https://doi.org/10.1029/2011JC007516.
Wang, D., T. Kukulka, R. G. Brandon, T. Hara, I. Ginis, and P. P. Sullivan, 2018: Interaction of Langmuir turbulence and inertial currents in the ocean surface boundary layer under tropical cyclones. J. Phys. Oceanogr., 48, 1921−1940, https://doi.org/10.1175/JPO-D-17-0258.1.
Wijesekera, H. W., D. W. Wang, W. J. Teague, E. Jarosz, W. E. Rogers, D. B. Fribance, and J. N. Moum, 2013: Surface wave effects on high-frequency currents over a shelf edge bank. J. Phys. Oceanogr., 43, 1627−1647, https://doi.org/10.1175/JPO-D-12-0197.1.
Xuan, A. Q., B.-Q. Deng, and L. Shen, 2019: Study of wave effect on vorticity in Langmuir turbulence using wave-phase-resolved large-eddy simulation. J. Fluid Mech., 875, 173−224, https://doi.org/10.1017/jfm.2019.481.
Xuan, A. Q., B.-Q. Deng, and L. Shen, 2020: Numerical study of effect of wave phase on Reynolds stresses and turbulent kinetic energy in Langmuir turbulence. J. Fluid Mech., 904, A17, https://doi.org/10.1017/jfm.2020.688[Opensinanewwindow.
Yang, D., M. Chamecki, and C. Meneveau, 2014: Inhibition of oil plume dilution in Langmuir ocean circulation. Geophys. Res. Lett., 41, 1632−1638, https://doi.org/10.1002/2014GL059284.