Bais, A. F., R. L. McKenzie, G. Bernhard, P. J. Aucamp, M. Ilyas, S. Madronich, and K. Tourpali, 2015: Ozone depletion and climate change: Impacts on UV radiation. Photochemical & Photobiological Sciences, 14, 19−52, https://doi.org/10.1039/C4PP90032D.
Ball, W. T., and Coauthors, 2018: Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery. Atmospheric Chemistry and Physics, 18, 1379−1394, https://doi.org/10.5194/acp-18-1379-2018.
Ball, W. T., J. Alsing, J. Staehelin, S. M. Davis, L. Froidevaux, and T. Peter, 2019: Stratospheric ozone trends for 1985-2018: Sensitivity to recent large variability. Atmospheric Chemistry and Physics, 19, 12 731−12 748, https://doi.org/10.5194/acp-19-12731-2019.
Bernhard, G., C. R. Booth, J. C. Ehramjian, R. Stone, and E. G. Dutton, 2007: Ultraviolet and visible radiation at Barrow, Alaska: Climatology and influencing factors on the basis of version 2 National Science Foundation network data. J. Geophys. Res.: Atmos., 112, D09101, https://doi.org/10.1029/2006JD007865.
Bognar, K., S. Tegtmeier, A. Bourassa, C. Roth, T. Warnock, D. Zawada, and D. Degenstein, 2022: Stratospheric ozone trends for 1984−2021 in the SAGE II–OSIRIS–SAGE III/ISS composite dataset. Atmospheric Chemistry and Physics, 22, 9553−9569, https://doi.org/10.5194/acp-22-9553-2022.
Bourassa, A. E., C. Z. Roth, D. J. Zawada, L. A. Rieger, C. A. McLinden, and D. A. Degenstein, 2018: Drift-corrected Odin-OSIRIS ozone product: Algorithm and updated stratospheric ozone trends. Atmospheric Measurement Techniques, 11, 489−498, https://doi.org/10.5194/amt-11-489-2018.
Chang, M. E., 2003: Chemistry of Atmospheres: R. P. Wayne (Ed.), Oxford University Press, Oxford, third ed., 2000, ISBN 0-19-850375-X. Agric. For Meteorol., 118, 143−144, https://doi.org/10.1016/S0168-1923(03)00068-6.
Chipperfield, M., 2009: Nitrous oxide delays ozone recovery. Nature Geoscience, 2, 742−743, https://doi.org/10.1038/ngeo678.
Chipperfield, M. P., 2006: New version of the TOMCAT/SLIMCAT off-line chemical transport model: Intercomparison of stratospheric tracer experiments. Quart. J. Roy. Meteor. Soc., 132, 1179−1203, https://doi.org/10.1256/qj.05.51.
Chipperfield, M. P., and Coauthors, 2018: On the cause of recent variations in lower stratospheric ozone. Geophys. Res. Lett., 45, 5718−5726, https://doi.org/10.1029/2018GL078071.
Crutzen, P. J., 1970: The influence of nitrogen oxides on the atmospheric ozone content. Quart. J. Roy. Meteor. Soc., 96, 320−325, https://doi.org/10.1002/qj.49709640815.
Daniel, J. S., E. L. Fleming, R. W. Portmann, G. J. M. Velders, C. H. Jackman, and A. R. Ravishankara, 2010: Options to accelerate ozone recovery: Ozone and climate benefits. Atmospheric Chemistry and Physics, 10, 7697−7707, https://doi.org/10.5194/acp-10-7697-2010.
Davis, S. M., and Coauthors, 2016: The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: A long-term database for climate studies. Earth System Science Data, 8, 461−490, https://doi.org/10.5194/essd-8-461-2016.
den Outer, P. N., and Coauthors, 2010: Reconstructing of erythemal ultraviolet radiation levels in Europe for the past 4 decades. J. Geophys. Res., 115, D10102, https://doi.org/10.1029/2009JD012827.
Dhomse, S. S., and Coauthors, 2018: Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations. Atmospheric Chemistry and Physics, 18, 8409−8438, https://doi.org/10.5194/acp-18-8409-2018.
Dietmüller, S., H. Garny, R. Eichinger, and W. T. Ball, 2021: Analysis of recent lower-stratospheric ozone trends in chemistry climate models. Atmospheric Chemistry and Physics, 21, 6811−6837, https://doi.org/10.5194/acp-21-6811-2021.
Douglass, A., and V. E. Fioletov, 2011: Stratospheric ozone and surface ultraviolet radiation. Scientific assessment of ozone depletion: 2010, Global Ozone Research and Monitoring Project, Report No. 52, Chapter 2, World Meteorological Organization, Geneva, Switzerland.
Eleftheratos, K. K., and Coauthors, 2020: Possible effects of greenhouse gases to ozone profiles and DNA active UV-B irradiance at ground level. Atmosphere, 11, 228, https://doi.org/10.3390/atmos11030228.
Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207−210, https://doi.org/10.1038/315207a0.
Feng, W., and Coauthors, 2011: Modelling the effect of denitrification on polar ozone depletion for Arctic winter 2004/2005. Atmospheric Chemistry and Physics, 11, 6559−6573, https://doi.org/10.5194/acp-11-6559-2011.
Feng, W. H., S. S. Dhomse, C. Arosio, M. Weber, J. P. Burrows, M. L. Santee, and M. P. Chipperfield, 2021: Arctic ozone depletion in 2019/20: Roles of chemistry, dynamics and the Montreal Protocol. Geophys. Res. Lett., 48, e2020GL091911, https://doi.org/10.1029/2020GL091911.
Gurney, K. R., 1998: Evidence for increasing ultraviolet irradiance at Point Barrow, Alaska. Geophys. Res. Lett., 25, 903−906, https://doi.org/10.1029/98GL00405.
He, Y., X. Q. Zhu, Z. Sheng, M. Y. He, and Y. T. Feng, 2022: Observations of inertia gravity waves in the Western Pacific and their characteristic in the 2015/2016 quasi-biennial oscillation disruption. J. Geophys. Res., 127, e2022JD037208, https://doi.org/10.1029/2022JD037208.
Hegglin, M. I., and T. G. Shepherd, 2009: Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux. Nature Geoscience, 2, 687−691, https://doi.org/10.1038/ngeo604.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Hovila, J., A. Arola, and J. Tamminen, 2013: OMI/Aura Surface UVB Irradiance and Erythemal Dose Daily L3 Global Gridded 1.0 degree x 1.0 degree V3. NASA Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center (GES DISC).
Hu, D. Z., Z. Y. Guan, M. C. Liu, and W. H. Feng, 2022: Dynamical mechanisms for the recent ozone depletion in the Arctic stratosphere linked to North Pacific sea surface temperatures. Climate Dyn., 58(9), 2663−2679, https://doi.org/10.1007/s00382-021-06026-x.
Kylling, A., A. Dahlback, and B. Mayer, 2000: The effect of clouds and surface albedo on UV irradiances at a high latitude site. Geophys. Res. Lett., 27, 1411−1414, https://doi.org/10.1029/1999GL011015.
Kyrölä, E., M. Laine, V. Sofieva, J. Tamminen, S. M. Päivärinta, S. Tukiainen, J. Zawodny, and L. Thomason, 2013: Combined SAGE II–GOMOS ozone profile data set for 1984−2011 and trend analysis of the vertical distribution of ozone. Atmospheric Chemistry and Physics, 13, 10 645−10 658, https://doi.org/10.5194/acp-13-10645-2013.
Livesey, N. J., M. L. Santee, and G. L. Manney, 2015: A Match-based approach to the estimation of polar stratospheric ozone loss using Aura Microwave Limb Sounder observations. Atmospheric Chemistry and Physics, 15, 9945−9963.
Lu, J. P., F. Xie, W. S. Tian, J. P. Li, W. H. Feng, M. Chipperfield, J. K. Zhang, and X. Ma, 2019: Interannual variations in lower stratospheric ozone during the period 1984−2016. J. Geophys. Res.: Atmos., 124, 8225−8241, https://doi.org/10.1029/2019JD030396.
Lucas, R. M., and Coauthors, 2019: Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochemical & Photobiological Sciences, 18, 641−680, https://doi.org/10.1039/c8pp90060d.
Molina, M. J., and F. S. Rowland, 1974: Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone. Nature, 249, 810−812, https://doi.org/10.1038/249810a0.
Montzka, S. A., and Coauthors, 2018: An unexpected and persistent increase in global emissions of ozone-depleting CFC-11. Nature, 557, 413−417, https://doi.org/10.1038/s41586-018-0106-2.
Morgenstern, O., and Coauthors, 2018: Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations. Atmospheric Chemistry and Physics, 18, 1091−1114, https://doi.org/10.5194/acp-18-1091-2018.
Orbe, C., K. Wargan, S. Pawson, and L. D. Oman, 2020: Mechanisms linked to recent ozone decreases in the Northern Hemisphere lower stratosphere. J. Geophys. Res.: Atmos., 125, e2019JD031631, https://doi.org/10.1029/2019JD031631.
Petropavlovskikh, I., S. Godin-Beekmann, D. Hubert, R. Damadeo, B. Hassler, and V. Sofieva, 2019: SPARC/IO3C/GAW report on long-term ozone trends and uncertainties in the stratosphere. SPARC Report No. 9, GAW Report No. 241, https://doi.org/10.17874/f899e57a20b.
Randeniya, L. K., P. F. Vohralik, and I. C. Plumb, 2002: Stratospheric ozone depletion at northern mid latitudes in the 21st century: The importance of future concentrations of greenhouse gases nitrous oxide and methane. Geophys. Res. Lett., 29(4), https://doi.org/10.1029/2001GL014295.
Ravishankara, A. R., J. S. Daniel, and R. W. Portmann, 2009: Nitrous Oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science, 326, 123−125, https://doi.org/10.1126/science.1176985.
Sofieva, V. F., and Coauthors, 2017: Merged SAGE II, Ozone_cci and OMPS ozone profile dataset and evaluation of ozone trends in the stratosphere. Atmospheric Chemistry and Physics, 17, 12 533−12 552, https://doi.org/10.5194/acp-17-12533-2017.
Solomon, S., 1999: Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys., 37, 275−316, https://doi.org/10.1029/1999RG900008.
Solomon, S., R. R. Garcia, F. S. Rowland, and D. J. Wuebbles, 1986: On the depletion of Antarctic ozone. Nature, 321, 755−758, https://doi.org/10.1038/321755a0.
Solomon, S., and Coauthors, 2022: On the stratospheric chemistry of midlatitude wildfire smoke. Proceedings of the National Academy of Sciences of the United States of America, 119, e2117325119, https://doi.org/10.1073/pnas.2117325119.
SPARC/IO3C/GAW, 2019: SPARC/IO3C/GAW report on long-term ozone trends and uncertainties in the stratosphere. Petropavlovskikh et al., Eds., SPARC Report No. 9, GAW Report No. 241, WCRP-17/2018, https://doi.org/10.17874/f899e57a20b.
Steinbrecht, W., and Coauthors, 2017: An update on ozone profile trends for the period 2000 to 2016. Atmospheric Chemistry and Physics, 17, 10 675−10 690, https://doi.org/10.5194/acp-17-10675-2017.
Thompson, R. L., and Coauthors, 2019: Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nature Climate Change, 9, 993−998, https://doi.org/10.1038/s41558-019-0613-7.
Tian, W. S., and Coauthors, 2017: The relationship between lower-stratospheric ozone at southern high latitudes and sea surface temperature in the East Asian marginal seas in austral spring. Atmospheric Chemistry and Physics, 17, 6705−6722, https://doi.org/10.5194/acp-17-6705-2017.
Tourpali, K., and Coauthors, 2009: Clear sky UV simulations for the 21st century based on ozone and temperature projections from Chemistry-Climate Models. Atmospheric Chemistry and Physics, 9, 1165−1172, https://doi.org/10.5194/acp-9-1165-2009.
Van Der A, R. J., M. A. F. Allaart, and H. J. Eskes, 2015: Extended and refined multi sensor reanalysis of total ozone for the period 1970−2012. Atmospheric Measurement Techniques, 8, 3021−3035, https://doi.org/10.5194/amt-8-3021-2015.
Van Geffen, J., M. Van Weele, M. Allaart, and A. R. Van Der, 2017: TEMIS UV index and UV dose MSR-2 data products, version 2. Dataset. Royal Netherlands Meteorological Institute (KNMI), https://doi.org/10.21944/temis-uv-msr2-v2.
Wang, W., W. Tian, S. Dhomse, F. Xie, J. Shu, and J. Austin, 2014: Stratospheric ozone depletion from future nitrous oxide increases. Atmospheric Chemistry and Physics, 14, 12 96710.21944/temis-uv-msr2-v212 982, https://doi.org/10.5194/acp-14-12967-2014.
Wargan, K., C. Orbe, S. Pawson, J. R. Ziemke, L. D. Oman, M. A. Olsen, L. Coy, and K. E. Knowland, 2018: Recent decline in extratropical lower stratospheric ozone attributed to circulation changes. Geophys. Res. Lett., 45, 5166−5176, https://doi.org/10.1029/2018GL077406.
Weber, M., and Coauthors, 2022: Global total ozone recovery trends attributed to ozone-depleting substance (ODS) changes derived from five merged ozone datasets. Atmospheric Chemistry and Physics, 22, 6843−6859, https://doi.org/10.5194/acp-22-6843-2022.
Williamson, C. E., and Coauthors, 2014: Solar ultraviolet radiation in a changing climate. Nature Climate Change, 4, 434−441, https://doi.org/10.1038/nclimate2225.
Xia, Y., F. Xie, and X. Lu, 2023: Enhancement of Arctic surface ozone during the 2020−2021 winter associated with the sudden stratospheric warming. Environmental Research Letters, 18, 024003, https://doi.org/10.1088/1748-9326/acaee0.
Xie, F., J. P. Li, W. S. Tian, J. K. Zhang, and C. Sun, 2014: The relative impacts of El Niño Modoki, canonical El Niño, and QBO on tropical ozone changes since the 1980s. Environmental Research Letters, 9, 064020, https://doi.org/10.1088/1748-9326/9/6/064020.
Zhang, J. K., and Coauthorset al., 2018: Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift. Nature. Communications., 9, 206, https://doi.org/10.1038/s41467-017-02565-2.
Zhang, J., Q. Ji., Z. Sheng., M. He., Y. He., X. Zuo., Z. He., Z. Qin, and G. Wu, 2023: Observation based climatology Martian atmospheric waves perturbation Datasets. Scientific Data, 10, 4, https://doi.org/10.1038/s41597-022-01909-y.