Alshawaf, F., T. Fuhrmann, A. Knöpfler, X. Luo, M. Mayer, S. Hinz, and B. Heck, 2015: Accurate estimation of atmospheric water vapor using GNSS observations and surface meteorological data. IEEE Trans. Geosci. Remote Sens., 53, 3764−3771, https://doi.org/10.1109/TGRS.2014.2382713.
Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the aqua mission: design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41, 253−264, https://doi.org/10.1109/TGRS.2002.808356.
Berk, A., L. S. Bernstein, and D. C. Robertson, 1987: MODTRAN: A moderate resolution model for LOWTRAN. Technical Report, AD-A-185384/5/XAB.
Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, 1992: GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res., 97, 15 787−15 801, https://doi.org/10.1029/92JD01517.
Chen, L., X. Q. Hu, N. Q. Xu, and P. Zhang, 2013: The application of deep convective clouds in the calibration and response monitoring of the reflective solar bands of FY-3A/MERSI (Medium Resolution Spectral Imager). Remote Sensing, 5(12), 6958−6975, https://doi.org/10.3390/rs5126958.
Chen, L., P. Zhang, J. Y. Lv, N. Xu, and X. Q. Hu, 2017: Radiometric calibration evaluation for RSBs of Suomi-NPP/VIIRS and Aqua/MODIS based on the 2015 Dunhuang Chinese Radiometric Calibration Site in situ measurements. Int. J. Remote Sens., 38(20), 5640−5656, https://doi.org/10.1080/01431161.2017.1343514.
Czajkowski, K. P., S. N. Goward, D. Shirey, and A. Walz, 2002: Thermal remote sensing of near-surface water vapor. Remote Sens. Environ., 79, 253−265, https://doi.org/10.1016/S0034-4257(01)00277-2.
Dessler, A. E., Z. Zhang, and P. Yang, 2008: Water-vapor climate feedback inferred from climate fluctuations, 2003-2008. Geophys. Res. Lett., 35, L20704, https://doi.org/10.1029/2008GL035333.
Diedrich, H., R. Preusker, R. Lindstrot, and J. Fischer, 2015: Retrieval of daytime total columnar water vapour from MODIS measurements over land surfaces. Atmospheric Measurement Techniques, 8, 823−836, https://doi.org/10.5194/amt-8-823-2015.
Elgered, G., H. P. Plag, H. van der Marel, S. Barlag, and J. Nash, 2005: Ground-based GPS for operational numerical weather prediction and climate applications. Final Report, COST Action 716 EUR 21639 edition, COST Office, Luxembourg. [Available online athttps://core.ac.uk/download/pdf/70606169.pdf]
Fix, A., G. Poberaj, C. Kiemle, H. Flentje, R. Busen, M. Fiebig, and G. Ehret, 2002: MIPAS Validation with the DLR Falcon. Proc. Envisat Validation Workshop, H. Lacoste, Ed., ESA SP-531, Frascati, Italy, 721pp.
Gao, B. C., and Y. J. Kaufman, 2003: Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels. J. Geophys. Res., 108, 4389, https://doi.org/10.1029/2002JD003023.
Gong, S. Q., D. F. Hagan, J. Lu, and G. J. Wang, 2018: Validation on MERSI/FY-3A precipitable water vapor product. Advances in Space Research, 61, 413−425, https://doi.org/10.1016/j.asr.2017.10.005.
Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annual Review of Energy and the Environment, 25, 441−475, https://doi.org/10.1146/annurev.energy.25.1.441.
Hu, X. Q., Y. F. Huang, Q. F. Lu, and J. Zheng, 2011: Retrieving precipitable water vapor based on the near-infrared data of FY-3A satellite. Journal of Applied Meteorological Science, 22, 46−56, https://doi.org/10.3969/j.issn.1001-7313.2011.01.005. (in Chinese with English abstract
Kaufman, Y. J., and B. C. Gao, 1992: Remote sensing of water vapor in the near IR from EOS/MODIS. IEEE Trans. Geosci. Remote Sens., 30, 871−884, https://doi.org/10.1109/36.175321.
Li, Y., and Coauthors, 2009: Post launch site calibration of visible and near-infrared channels of FY-3A visible and infrared radiometers. Optics and Precision Engineering, 17, 2966−2973, https://doi.org/10.3321/j.issn:1004-924X.2009.12.014.
Li, Z. H., J. P. Muller, and P. Cross, 2003: Comparison of precipitable water vapor derived from radiosonde, GPS, and moderate-resolution imaging spectroradiometer measurements. J. Geophys. Res. Atmos., 108, 4651, https://doi.org/10.1029/2003JD003372.
Li, Z. L., B. H. Tang, H. Wu, H. Z. Ren, G. J. Yan, Z. M. Wan, I. F. Trigo, and J. A. Sobrino, 2013: Satellite-derived land surface temperature: current status and perspectives. Remote Sens. Environ., 131, 14−37, https://doi.org/10.1016/j.rse.2012.12.008.
Liu, Z. Z., M. S. Wong, J. Nichol, and P. W. Chan, 2013: A multi-sensor study of water vapour from radiosonde, MODIS and AERONET: A case study of Hong Kong. International Journal of Climatology, 33, 109−120, https://doi.org/10.1002/joc.3412.
Liu, Z. Z., B. Y. Chen, S. T. Chan, Y. C. Cao, Y. Gao, K. F. Zhang, and J. Nichol, 2015a: Analysis and modelling of water vapour and temperature changes in Hong Kong using a 40-year radiosonde record: 1973−2012. International Journal of Climatology, 35, 462−474, https://doi.org/10.1002/joc.4001.
Liu, H. L., S. H. Tang, S. L. Zhang, and J. Y. Hu, 2015b: Evaluation of MODIS water vapour products over China using radiosonde data. Int. J. Remote Sens., 36, 680−690, https://doi.org/10.1080/01431161.2014.999884.
Liu, H. L., S. H. Tang, J. Y. Hu, S. L. Zhang, and X. B. Deng, 2017: An improved physical split-window algorithm for precipitable water vapor retrieval exploiting the water vapor channel observations. Remote Sens. Environ., 194, 366−378, https://doi.org/10.1016/j.rse.2017.03.031.
Liu, J. M., H. Liang, Z. Sun, and X. Zhou, 2006: Validation of the moderate-resolution imaging Spectroradiometer precipitable water vapor product using measurements from GPS on the Tibetan Plateau. J. Geophys. Res., 111(D14), D14103, https://doi.org/10.1029/2005JD007028.
Mockler, S. B., 1995: Water vapor in the climate system. American Geophysical Union, Washington, DC. [Available online at https://www.eso.org/gen-fac/pubs/astclim/espas/pwv/mockler.html]
Park, C. G., J. H. Baek, and J. H. Cho, 2010: Analysis on characteristics of radiosonde bias using GPS precipitable water vapor. Journal of Astronomy and Space Sciences, 27(3), 213−220, https://doi.org/10.5140/jass.2010.27.3.213.
Prasad, A. K., and R. P. Singh, 2009: Validation of MODIS Terra, AIRS, NCEP/DOE AMIP-II Reanalysis-2, and AERONET Sun photometer derived integrated precipitable water vapor using ground-based GPS receivers over India. J. Geophys. Res., 114, D05107, https://doi.org/10.1029/2008JD011230.
Qin, Z., A. Karnieli, and P. Berliner, 2001: A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens., 22, 3719−3746, https://doi.org/10.1080/01431160010006971.
Sun, L., and Coauthors, 2012a: On-orbit response variation analysis of FY-3 MERSI reflective solar bands based on Dunhuang site calibration. Spectroscopy and Spectral Analysis, 32, 1869−1877, https://doi.org/10.3964/j.issn.1000-0593(2012)07-1869-09.
Sun, L., X. Q. Hu, M. H. Guo, and N. Xu, 2012b: Multisite calibration tracking for FY-3A MERSI solar bands. IEEE Trans. Geosci. Remote Sens., 50(12), 4929−4942, https://doi.org/10.1109/TGRS.2012.2215613.
Tregoning, P., R. Boers, D. O’Brien, and M. Hendy, 1998: Accuracy of absolute precipitable water vapor estimates from GPS observations. J. Geophys. Res., 103, 28 701−28 710, https://doi.org/10.1029/98JD02516.
Vermote, E. F., N. Z. El Saleous, and C. O. Justice, 2002: Atmospheric correction of MODIS data in the visible to middle infrared: First results. Remote Sens. Environ., 83, 97−111, https://doi.org/10.1016/S0034-4257(02)00089-5.
Vermote, E. F., D. Tanre, J. L. Deuze, M. Herman, and J. J. Morcette, 1997: Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens., 35(3), 675−686, https://doi.org/10.1109/36.581987.
Wang, H., X. Liu, K. Chance, G. G. Abad, and C. C. Miller, 2014: Water vapor retrieval from OMI visible spectra. Atmospheric Measurement Techniques, 7(6), 1901−1913, https://doi.org/10.5194/amt-7-1901-2014.
Wang, L., X. Q. Hu, and L. Chen, 2015: FY-3C/MERSI caliration for solar band using multi-reflectance stable targets. Optics and Precision Engineering, 23(7), 1911−1920, https://doi.org/10.3788/OPE.20152307.1911. (in Chinese with English abstract
Wang, L., X. Q. Hu, and L. Chen, 2017: Wide dynamic nonlinear radiometric calibration of optical satellite sensors using multiple stable earth targets. Journal of Remote Sensing, 21(6), 892−906, https://doi.org/10.11834/jrs.20176351. (in Chinese with English abstract
Ware, R. H., and Coauthors, 2000: SuomiNet: A real-time national GPS network for atmospheric research and education. Bull. Amer. Meteor. Soc., 81, 677−694, https://doi.org/10.1175/1520-0477(2000)081<0677:SARNGN>2.3.CO;2.
Wong, M. S., X. M. Jin, Z. Z. Liu, J. Nichol, and P. W. Chan, 2015: Multi-sensors study of precipitable water vapour over mainland China. International Journal of Climatology, 35, 3146−3159, https://doi.org/10.1002/joc.4199.
Xu, N., R. H. Wu, X. Q. Hu, L. Chen, L. Wang, and L. Sun, 2015: Integrated method for on-obit wide dynamic vicarious calibration of FY-3C MERSI reflective solar bands. Acta Optica Sinica, 35(12), 1228001, https://doi.org/10.3788/AOS201535.1228001. (in Chinese with English abstract
Xu, N., and Coauthors, 2018: Prelaunch calibration and radiometric performance of the advanced MERSI II on FengYun-3D. IEEE Trans. Geosci. Remote Sens., 56, 4866−4875, https://doi.org/10.1109/TGRS.2018.2841827.
Yang, Z. D., and Coauthors, 2019: Capability of Fengyun-3D satellite in earth system observation. J. Meteor. Res., 33, 1113−1130, https://doi.org/10.1007/s13351-019-9063-4.
Zhang, P., and Coauthors, 2019: Latest progress of the Chinese meteorological satellite program and core data processing technologies. Adv. Atmos. Sci., 36, 1027−1045, https://doi.org/10.1007/s00376-019-8215-x.
Zhao, T. B., A. G. Dai, and J. H. Wang, 2012: Trends in tropospheric humidity from 1970 to 2008 over China from a homogenized radiosonde dataset. J. Climate, 25, 4549−4567, https://doi.org/10.1175/jcli-d-11-00557.1.