Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15(14), 1893−1910, https://journals.ametsoc.org/view/journals/clim/15/14/1520-0442_2002_015_1893_cttjsw_2.0.co_2.xml.
Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 1990−2009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.
Chen, D., J. Q. Sun, and Y. Gao, 2020: Distinct impact of the Pacific multi-decadal oscillation on precipitation in Northeast China during April in different Pacific multi-decadal oscillation phases. International Journal of Climatology, 40, 1630−1643, https://doi.org/10.1002/joc.6291.
Chen, M. Y., P. P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. Journal of Hydrometeorology, 3, 249−266, https://doi.org/10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.
Gao, Z. T., Z.-Z. Hu, J. S. Zhu, S. Yang, R.-H. Zhang, Z. N. Xiao, and B. Jha, 2014: Variability of summer rainfall in Northeast China and its connection with spring rainfall variability in the Huang-Huai region and Indian Ocean SST. J. Climate, 27, 7086−7101, https://doi.org/10.1175/JCLI-D-14-00217.1.
Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteorol. Soc., 106, 447−462, https://doi.org/10.1002/qj.49710644905.
Han, T. T., S. P. He, H. J. Wang, and X. Hao, 2018a: Enhanced influence of early-spring tropical Indian Ocean SST on the following early-summer precipitation over Northeast China. Climate Dyn., 51, 4065−4076, https://doi.org/10.1007/s00382-017-3669-y.
Han, T. T., S. P. He, X. Hao, and H. J. Wang, 2018b: Recent interdecadal shift in the relationship between Northeast China’s winter precipitation and the North Atlantic and Indian Oceans. Climate Dyn., 50, 1413−1424, https://doi.org/10.1007/s00382-017-3694-x.
Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 1825−1830, https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Holman, K. D., D. J. Lorenz, and M. Notaro, 2014: Influence of the background state on rossby wave propagation into the great lakes region based on observations and model simulations. J. Climate, 27(24), 9302−9322, https://doi.org/10.1175/JCLI-D-13-00758.1.
Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179−1196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.
Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 1661−1671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.
Hsu, P.-C., Z. Fu, H. Murakami, J.-Y. Lee, C. Yoo, N. C. Johnson, C.-H. Chang, and Y. Liu, 2021: East Antarctic cooling induced by decadal changes in Madden-Julian oscillation during austral summer. Science Advances, 7, eabf9903, https://doi.org/10.1126/sciadv.abf9903.
Hu, Y. P., B. T. Zhou, T. T. Han, H. X. Li, and H. J. Wang, 2021: Out-of-phase decadal change in drought over Northeast China between early spring and late summer around 2000 and its linkage to the Atlantic Sea surface temperature. J. Geophys. Res., 126, e2020JD034048, https://doi.org/10.1029/2020JD034048.
Huang, B. Y., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179−8205, https://doi.org/10.1175/JCLI-D-16-0836.1.
Huang, R. H., 1992: The East Asia/Pacific pattern teleconnection of summer circulation and climate anomaly in East Asia. Journal of Meteorological Research, 6, 25−37.
Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437−472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5−48, https://doi.org/10.2151/jmsj.2015-001.
Li, X. X., J. Q. Sun, M. Q. Zhang, Y. Zhang, and J. H. Ma, 2021: Possible connection between declining Barents Sea ice and interdecadal increasing Northeast China precipitation in May. International Journal of Climatology, 41, 6270−6282, https://doi.org/10.1002/joc.7193.
Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. Technical report, Statistical Forecast Project Report 1, 49 pp.
Lu, R., Z. W. Zhu, T. Li, and H. Y. Zhang, 2020: Interannual and interdecadal variabilities of spring rainfall over Northeast China and their Associated Sea surface temperature anomaly forcings. J. Climate, 33, 1423−1435, https://doi.org/10.1175/JCLI-D-19-0302.1.
Lu, R. Y., J.-H. Oh, and B.-J. Kim, 2002: A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus A, 54, 44−55, https://doi.org/10.1034/j.1600-0870.2002.00248.x.
Qian, Y. T., P.-C. Hsu, J. C. Yuan, Z. W. Zhu, H. J. Wang, and M. K. Duan, 2022: Effects of subseasonal variation in the East Asian monsoon system on the summertime heat wave in western North America in 2021. Geophys. Res. Lett., 49(8), e2021GL097659, https://doi.org/10.1029/2021GL097659.
Shen, B. Z., Z. D. Lin, R. Y. Lu, and Y. Lian, 2011: Circulation anomalies associated with interannual variation of early- and late-summer precipitation in Northeast China. Science China Earth Sciences, 54, 1095−1104, https://doi.org/10.1007/s11430-011-4173-6.
Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608−627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.
Wang, H. J., and S. P. He, 2013: The increase of snowfall in Northeast China after the mid-1980s. Chinese Science Bulletin, 58, 1350−1354, https://doi.org/10.1007/s11434-012-5508-1.
Watanabe, M., 2004: Asian jet waveguide and a downstream extension of the North Atlantic Oscillation. J. Climate, 17, 4674−4691, https://doi.org/10.1175/JCLI-3228.1.
Wu, J., and X.-J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets. Chinese Journal of Geophysics, 56, 1102−1111, https://doi.org/10.6038/cjg20130406. (in Chinese with English abstract
Zhang, C., Y. Y. Guo, and Z. P. Wen, 2022: Interdecadal change in the effect of Tibetan Plateau snow cover on spring precipitation over Eastern China around the early 1990s. Climate Dyn., 58, 2807−2824, https://doi.org/10.1007/s00382-021-06035-w.
Zhang, M. Q., and J. Q. Sun, 2018: Enhancement of the spring East China precipitation response to tropical sea surface temperature variability. Climate Dyn., 51, 3009−3021, https://doi.org/10.1007/s00382-017-4061-7.
Zhang, M. Q., and J. Q. Sun, 2020: Increased role of late winter sea surface temperature variability over northern tropical Atlantic in spring precipitation prediction over Northeast China. J. Geophys. Res., 125, e2020JD033232, https://doi.org/10.1029/2020JD033232.
Zhao, J. H., H. Zhang, J. Q. Zuo, L. Yang, J. Yang, K. G. Xiong, G. L. Feng, and W. J. Dong, 2022: Oceanic drivers and empirical prediction of interannual rainfall variability in late summer over Northeast China. Climate Dyn., 58, 861−878, https://doi.org/10.1007/s00382-021-05945-z.
Zhou, B. T., Z. Y. Wang, B. Sun, and X. Hao, 2021: Decadal change of heavy snowfall over northern China in the Mid-1990s and associated background circulations. J. Climate, 34, 825−837, https://doi.org/10.1175/JCLI-D-19-0815.1.
Zhu, Z. W., and T. Li, 2016: A new paradigm for continental U.S. summer rainfall variability: Asia–North America teleconnection. J. Climate, 29, 7313−7327, https://doi.org/10.1175/JCLI-D-16-0137.1.
Zhu, Z. W., and T. Li, 2018: Amplified contiguous United States summer rainfall variability induced by East Asian monsoon interdecadal change. Climate Dyn., 50, 3523−3536, https://doi.org/10.1007/s00382-017-3821-8.