Chen, B., X.-D. Xu, S. Yang, and W. Zhang, 2012: On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau. Theor. Appl. Climatol., 110 (3), 423−435, https://doi.org/10.1007/s00704-012-0641-y.
Chen, B., W. Zhang, S. Yang, and X. D. Xu, 2019a: Identifying and contrasting the sources of the water vapor reaching the subregions of the Tibetan Plateau during the wet season. Climate Dyn., 53 (11), 6891−6907, https://doi.org/10.1007/s00382-019-04963-2.
Chen, J. H., X. Q. Wu, Y. Yin, and H. Xiao, 2015: Characteristics of heat sources and clouds over eastern China and the Tibetan Plateau in boreal summer. J. Climate, 28 (18), 7279−7296, https://doi.org/10.1175/JCLI-D-14-00859.1.
Chen, J. H., X. Q. Wu, Y. Yin, Q. Huang, and H. Xiao, 2017: Characteristics of cloud systems over the Tibetan Plateau and East China during boreal summer. J. Climate, 30 (9), 3117−3137, https://doi.org/10.1175/JCLI-D-16-0169.1.
Chen, L. X., E. R. Reiter, and Z. Q. Feng, 1985: The atmospheric heat source over the Tibetan Plateau: May-August 1979. Mon. Wea. Rev., 113 (10), 1771−1790, https://doi.org/10.1175/1520-0493(1985)113<1771:TAHSOT>2.0.CO;2.
Chen, P., B. Zhu, J. H. Gao, H. Q. Kang, and T. Zhu, 2019b: Quantitative identification of moisture sources over the Tibetan Plateau and the relationship between thermal forcing and moisture transport. Climate Dyn., 52 (1−2), 181−196, https://doi.org/10.1007/s00382-018-4130-6.
Fu, Y. F., G. S. Liu, G. X. Wu, R. C. Yu, Y. P. Xu, Y. Wang, R. Li, and Q. Liu, 2006: Tower mast of precipitation over the central Tibetan Plateau summer. Geophys. Res. Lett., 33 (5), L05802, https://doi.org/10.1029/2005GL024713.
Fu, Y. F., and Coauthors, 2020: Land-surface processes and summer-cloud-precipitation characteristics in the Tibetan Plateau and their effects on downstream weather: A review and perspective. National Science Review, 7 (3), 500−515, https://doi.org/10.1093/nsr/nwz226.
Guo, L., and C. W. Zhu, 2022: Coupling mode of westerly–monsoonal flow over the Tibetan Plateau and its seasonal variation. Chinese Journal of Atmospheric Sciences, 46 (4), 1017−1029, https://doi.org/10.3878/j.issn.1006-9895.2204.21260. (in Chinese with English abstract
Kuang, X. X., and J. J. Jiao, 2016: Review on climate change on the Tibetan plateau during the last half century. J. Geophys. Res., 121 (8), 3979−4007, https://doi.org/10.1002/2015JD024728.
Li, Y., F. G. Su, Q. H. Tang, H. K. Gao, D. H. Yan, H. Peng, and S. B. Xiao, 2022: Contributions of moisture sources to precipitation in the major drainage basins in the Tibetan Plateau. Science China Earth Sciences, 65 (6), 1088−1103, https://doi.org/10.1007/s11430-021-9890-6.
Li, Y. D., Y. Wang, Y. Song, L. Hu, S. T. Gao, and R. Fu, 2008: Characteristics of summer convective systems initiated over the Tibetan Plateau. Part I: Origin, track, development, and precipitation. J. Appl. Meteor. Climatol., 47 (10), 2679−2695, https://doi.org/10.1175/2008JAMC1695.1.
Liu, J. T., Z. X. Xu, H. Zhao, and J. Y. He, 2019: Accuracy assessment for two satellite precipitation products: Case studies in the Yarlung Zangbo River Basin. Plateau Meteorology, 38 (2), 386−396, https://doi.org/10.7522/j.issn.1000-0534.2018.00092. (in Chinese with English abstract
Liu, W. B., L. Wang, D. L. Chen, K. Tu, C. Q. Ruan, and Z. Y. Hu, 2016: Large-scale circulation classification and its links to observed precipitation in the eastern and central Tibetan Plateau. Climate Dyn., 46 (11−12), 3481−3497, https://doi.org/10.1007/s00382-015-2782-z.
Liu, Z., Z. Yao, H. Huang, S. Wu, and G. Liu, 2014: Land use and climate changes and their impacts on runoff in the Yarlung Zangbo river basin, China. Land Degradation & Development, 25 (3), 203−215, https://doi.org/10.1002/ldr.1159.
Maussion, F., D. Scherer, T. Mölg, E. Collier, J. Curio, and R. Finkelnburg, 2014: Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high Asia reanalysis. J. Climate, 27 (5), 1910−1927, https://doi.org/10.1175/JCLI-D-13-00282.1.
Pang, Z. H., D. H. Wang, X. L. Jiang, and M. H. Zhang, 2019: Analysis on thermodynamic characteristics of summer convective precipitation in the Qinghai-Tibet Plateau experimental region based on constrained objective variational analysis. Chinese Journal of Atmospheric Sciences, 43 (3), 511−524, https://doi.org/10.3878/j.issn.1006-9895.1806.18135. (in Chinese with English abstract
Schiemann, R., D. Luethi, and C. Schaer, 2009: Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region. J. Climate, 22 (11), 2940−2957, https://doi.org/10.1175/2008JCLI2625.1.
Schumacher, C., M. H. Zhang, and P. E. Ciesielski, 2007: Heating structures of the TRMM field campaigns. J. Atmos. Sci., 64 (7), 2593−2610, https://doi.org/10.1175/JAS3938.1.
Shi, Y. F., 2002: Characteristics of late Quaternary monsoonal glaciation on the Tibetan Plateau and in East Asia. Quaternary International, 97−98 , 79−91, https://doi.org/10.1016/s1040-6182(02)00053-8.
Tang, S. Q., and Coauthors, 2016: Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment. Atmospheric Chemistry and Physics, 16 (22), 14 249−14 264, https://doi.org/10.5194/acp-16-14249-2016.
Ueda, H., H. Kamahori, and N. Yamazaki, 2003: Seasonal contrasting features of heat and moisture budgets between the eastern and Western Tibetan Plateau during the GAME IOP. J. Climate, 16 (14), 2309−2324, https://doi.org/10.1175/2757.1.
Wang, C. H., H. X. Shi, H. L. Hu, Y. Wang, and B. K. Xi, 2015: Properties of cloud and precipitation over the Tibetan Plateau. Adv. Atmos. Sci., 32 (11), 1504−1516, https://doi.org/10.1007/s00376-015-4254-0.
Wang, D. H., X. L. Jiang, C. Y. Zhang, Z. H. Pang, Z. M. Liang, and M. H. Zhang, 2022: Physically consistent atmospheric variational objective analysis model and its applications over the Tibetan Plateau. Part I: Method and evaluation. Chinese Journal of Atmospheric Sciences, 46 (3), 621−644, https://doi.org/10.3878/j.issn.1006-9895.2106.21068. (in Chinese with English abstract
Wang, X., Y. F. Gong, and S. X. Cen, 2009: Characteristics of the moist pool and its moisture transports over Qinghai-Xizang Plateau in summer half year. Acta Geographica Sinica, 64 (5), 601−608, https://doi.org/10.11821/xb200905009. (in Chinese with English abstract
Wang, X. J., G. J. Pang, and M. X. Yang, 2018: Precipitation over the Tibetan Plateau during recent decades: A review based on observations and simulations. International Journal of Climatology, 38 (3), 1116−1131, https://doi.org/10.1002/joc.5246.
Wang, Y., and Coauthors, 2017: Evaluation of precipitable water vapor from four satellite products and four reanalysis datasets against GPS measurements on the Southern Tibetan Plateau. J. Climate, 30 (15), 5699−5713, https://doi.org/10.1175/JCLI-D-16-0630.1.
Webster, P. J., V. O. Magaña, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103 (C7), 14 451−14 510, https://doi.org/10.1029/97JC02719.
Wu, G. C., R. Z. Zhao, Z. S. Ma, and C. M. Shi, 2020: The hourly precipitation intensity and frequency in the Yarlung Zangbo river basin in China during last decade. Meteorol. Atmos. Phys., 132 (6), 899−907, https://doi.org/10.1007/s00703-020-00730-9.
Wu, G. X., B. He, A. M. Duan, Y. M. Liu, and W. Yu, 2017: Formation and variation of the atmospheric heat source over the Tibetan Plateau and its climate effects. Adv. Atmos. Sci., 34 (10), 1169−1184, https://doi.org/10.1007/s00376-017-7014-5.
Xie, S. C., T. Hume, C. Jakob, S. A. Klein, R. B. McCoy, and M. H. Zhang, 2010: Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE. J. Climate, 23 (1), 57−79, https://doi.org/10.1175/2009jcli3071.1.
Xie, S. C., Y. Y. Zhang, S. E. Giangrande, M. P. Jensen, R. McCoy, and M. H. Zhang, 2014: Interactions between cumulus convection and its environment as revealed by the MC3E sounding array. J. Geophys. Res., 119 (20), 11 784−11 808, https://doi.org/10.1002/2014jd022011.
Xu, X., T. Zhao, C. Lu, Y. Guo, B. Chen, R. Liu, Y. Li, and X. Shi, 2014: An important mechanism sustaining the atmospheric "water tower" over the Tibetan Plateau. Atmospheric Chemistry and Physics, 14 (20), 11 287−11 295, https://doi.org/10.5194/acp-14-11287-2014.
Xu, X. D., L. L. Dong, Y. Zhao, and Y. J. Wang, 2019: Effect of the Asian Water Tower over the Qinghai-Tibet Plateau and the characteristics of atmospheric water circulation. Chinese Science Bulletin, 64 (27), 2830−2841, https://doi.org/10.1360/TB-2019-0203. (in Chinese with English abstract
Xu, Z. C., L. Cheng, P. Luo, P. Liu, L. Zhang, F. P. Li, L. Liu, and J. Wang, 2020: A climatic perspective on the impacts of global warming on water cycle of cold mountainous catchments in the Tibetan Plateau: A case study in Yarlung Zangbo River Basin. Water, 12 (9), 2338, https://doi.org/10.3390/w12092338.
Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30 (4), 611−627, https://doi.org/10.1175/1520-0469(1973)030<0611:dobpot>2.0.co;2.
Yang, K., H. Wu, J. Qin, C. G. Lin, W. J. Tang, and Y. Y. Chen, 2014: Recent climate changes over the Tibetan plateau and their impacts on energy and water cycle: A review. Global and Planetary Change, 112, 79−91, https://doi.org/10.1016/j.gloplacha.2013.12.001.
You, Q. L., J. H. Min, H. B. Lin, N. Pepin, M. Sillanpää, and S. C. Kang, 2015: Observed climatology and trend in relative humidity in the central and eastern Tibetan Plateau. J. Geophys. Res., 120 (9), 3610−3621, https://doi.org/10.1002/2014JD023031.
Zhang, C., Q. H. Tang, D. L. Chen, R. J. van der Ent, X. C. Liu, W. H. Li, and G. G. Haile, 2019: Moisture source changes contributed to different precipitation changes over the northern and southern Tibetan Plateau. Journal of Hydrometeorology, 20 (2), 217−229, https://doi.org/10.1175/jhm-d-18-0094.1.
Zhang, C. Y., D. H. Wang, Z. H. Pang, X. L. Jiang, 2021a: Observed large-scale structures and diabatic heating profiles of precipitation over the Tibetan Plateau and South China. J. Geophys. Res., 126 (7), e2020JD033949, https://doi.org/10.1029/2020JD033949.
Zhang, C. Y., D. H. Wang, Z. H. Pang, Y. Zhang, X. L. Jiang, Z. L. Zeng, and Z. Z. Wu, 2021b: Large-scale dynamic, heat and moisture structures of monsoon-influenced precipitation in the East Asian monsoon rainy area. Quar. J. Roy. Meteor. Soc., 147 (735), 1007−1030, https://doi.org/10.1002/qj.3956.
Zhang, C. Y., D. H. Wang, Z. H. Pang, X. L. Jiang, and Q. H. Ma, 2022a: Physically consistent atmospheric variational objective analysis model and its applications over the Tibetan Plateau. Part II: Characteristics of cloud–precipitation, heat, and moisture in the Naqu Region. Chinese Journal of Atmospheric Sciences, 46 (4), 936−952, https://doi.org/10.3878/j.issn.1006-9895.2110.21078. (in Chinese with English abstract
Zhang, M. H., and J. L. Lin, 1997: Constrained variational analysis of sounding data based on column-integrated budgets of mass, heat, moisture, and momentum: Approach and application to ARM measurements. J. Atmos. Sci., 54 (11), 1503−1524, https://doi.org/10.1175/1520-0469(1997)054<1503:cvaosd>2.0.co;2.
Zhang, M. H., J. L. Lin, R. T. Cederwall, J. J. Yio, and S. C. Xie, 2001: Objective analysis of ARM IOP data: Method and sensitivity. Mon. Wea. Rev., 129 (2), 295−311, https://doi.org/10.1175/1520-0493(2001)129<0295:oaoaid>2.0.co;2.
Zhang, Y. H., C. M. Liu, K. Liang, and J. X. Lyu, 2022b: Spatio-temporal variation of precipitation in the Yarlung Zangbo River basin. Acta Geographica Sinica, 77 (3), 603−618, https://doi.org/10.11821/dlxb202203008. (in Chinese with English abstract
Zhang, Y. W., D. H. Wang, P. M. Zhai, G. J. Gu, and J. H. He, 2013: Spatial distributions and seasonal variations of tropospheric water vapor content over the Tibetan Plateau. J. Climate, 26 (15), 5637−5654, https://doi.org/10.1175/JCLI-D-12-00574.1.