Advanced Search

Volume 4 Issue 1

Jan.  1987

Article Contents

MESOSCALE SPECTRA OF THE FREE ATMOSPHERIC MOTION IN MID-LATITUDE SUMMER-UNIVERSALITY AND CONTRIBUTION OF THUNDERSTORM ACTIVITIES


doi: 10.1007/BF02656666

  • Meridional and vertical wind velocities of the free atmosphere were observed continuously in mid-latitude summer of 1981 by using Platteville ST radar in the eastern Colorado plains in order to obtain the mesoscale spectra. Power spectra were obtained for both meridional and vertical components at heights of 3.3-7.9 km for meridional and 3.3-17.7 km for vertical. Results show that the “-5/3 law” is a good fit to “meridional” spectra for wave periods ranging from ~3 hr to 2 days which are consistent with other published observations and give further evidence to the existence of a universal -5/3 law in mesoscale atmospheric motions. Results also show that for wave periods shorter than 3 hr (to about 10 min), the spectra obviously depart from the –5/3 law and reflect the significant contribution of thunderstorm activities which frequently happen in the mid-latitude summer. Mesoscale spectra of vertical velocity show some characteristics of gravity waves. The mechanism of the observed spectra is discussed.
  • [1] Yurun TIAN, Yongqi GAO, Dong GUO, 2021: The Relationship between Melt Season Sea Ice over the Bering Sea and Summer Precipitation over Mid-Latitude East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 918-930.  doi: 10.1007/s00376-021-0348-z
    [2] Bin Wang, Yihui Ding, 1992: An Overview of the Madden-Julian Oscillation and Its Relation to Monsoon and Mid-Latitude Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 93-111.  doi: 10.1007/BF02656934
    [3] Xiangdong ZHANG, Thomas JUNG, Muyin WANG, Yong LUO, Tido SEMMLER, Andrew ORR, 2018: Preface to the Special Issue: Towards Improving Understanding and Prediction of Arctic Change and Its Linkage with Eurasian Mid-latitude Weather and Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1-4.  doi: 10.1007/s00376-017-7004-7
    [4] Zhou Tianjun, Yu Rucong, Li Zhaoxin, 2002: ENSO-Dependent and ENSO-Independent Variability over the Mid-Latitude North Pacific: Observation and Air-Sea Coupled Model Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 1127-1147.  doi: 10.1007/s00376-002-0070-4
    [5] M. Y. Totagi, 1994: Power and Cross-Spectra for the Turbulent Atmospheric Motion and Transports in the Domain of Wave Number Frequency Space: Theoretical Aspects, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 491-498.  doi: 10.1007/BF02658170
    [6] Zhenhui WANG, Xinxiu SUI, Qing ZHANG, Lu YANG, Hang ZHAO, Min TANG, Yizhe ZHAN, Zhiguo ZHANG, 2017: Derivation of Cloud-Free-Region Atmospheric Motion Vectors from FY-2E Thermal Infrared Imagery, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 272-282.  doi: 10.1007/s00376-016-6098-7
    [7] LIU Dongxia, QIE Xiushu, PENG Liang, LI Wanli, 2014: Charge Structure of a Summer Thunderstorm in North China: Simulation Using a Regional Atmospheric Model System, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1022-1034.  doi: 10.1007/s00376-014-3078-7
    [8] Zhu Cuijuan, Li Xingsheng, Ye Zhuojia, 1984: AN ANALYSIS OF THE STRUCTURE OF THUNDERSTORM IN THE ATMOSPHERIC BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 105-118.  doi: 10.1007/BF03187621
    [9] LIU Yudi, WANG Bin, JI Zhongzhen, 2003: Research on Atmospheric Motion in Horizontal Discrete Grids, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 139-148.  doi: 10.1007/BF03342058
    [10] Chunhui LU, Ying SUN, Nikolaos CHRISTIDIS, Peter A. STOTT, 2020: Contribution of Global Warming and Atmospheric Circulation to the Hottest Spring in Eastern China in 2018, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1285-1294.  doi: 10.1007/s00376-020-0088-5
    [11] Zhiwei HE, Qinghong ZHANG, Jun SUN, 2016: The Contribution of Mesoscale Convective Systems to Intense Hourly Precipitation Events during the Warm Seasons over Central East China, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1233-1239.  doi: 10.1007/s00376-016-6034-x
    [12] Wanli LI, Xiushu QIE, Shenming FU, Debin SU, Yonghai SHEN, 2016: Simulation of Quasi-Linear Mesoscale Convective Systems in Northern China: Lightning Activities and Storm Structure, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 85-100.  doi: 10.1007/s00376-015-4170-3
    [13] Guo Pinwen, Tian Hong, Liu Xuanfei, 2000: Tropical Convective Activities Related to Summer Rainfall Anomaly in China, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 121-128.  doi: 10.1007/s00376-000-0048-z
    [14] YANG Lu, WANG Zhenhui, CHU Yanli, ZHAO Hang, TANG Min, 2014: Water Vapor Motion Signal Extraction from FY-2E Longwave Infrared Window Images for Cloud-free Regions: The Temporal Difference Technique, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1386-1394.  doi: 10.1007/s00376-014-3165-9
    [15] Ran ZHANG, Zhongshi ZHANG, Dabang JIANG, Qing YAN, Xin ZHOU, Zhigang CHENG, 2016: Strengthened African Summer Monsoon in the Mid-Piacenzian, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1061-1070.  doi: 10.1007/s00376-016-5215-y
    [16] LUO Zhexian, PING Fan, 2012: Simulations of the Motion of Tropical Cyclone-like Vortices in the Presence of Synoptic and Mesoscale Circulations, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 519-528.  doi: 10.1007/s00376-011-1199-9
    [17] Li Maicun, 1987: EQUATORIAL SOLITARY WAVES OF TROPICAL ATMOSPHERIC MOTION IN SHEAR FLOW, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 125-136.  doi: 10.1007/BF02677059
    [18] KOU Xingxia, ZHANG Meigen, PENG Zhen, WANG Yinghong, 2015: Assessment of the Biospheric Contribution to Surface Atmospheric CO2 Concentrations over East Asia with a Regional Chemical Transport Model, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 287-300.  doi: 10.1007/s00376-014-4059-6
    [19] DAI Tie, SHI Guangyu, ZHANG Xingying, 2012: Effect of HITRAN Database Improvement on Retrievals of Atmospheric Carbon Dioxide from Reflected Sunlight Spectra in the 1.61-m Spectral Window, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 227-235.  doi: 10.1007/s00376-011-0168-7
    [20] CHEN Jiepeng, WU Renguang, WEN Zhiping, 2012: Contribution of South China Sea Tropical Cyclones to an Increase in Southern China Summer Rainfall Around 1993, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 585-598.  doi: 10.1007/s00376-011-1181-6

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 1987
Manuscript revised: 10 January 1987
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

MESOSCALE SPECTRA OF THE FREE ATMOSPHERIC MOTION IN MID-LATITUDE SUMMER-UNIVERSALITY AND CONTRIBUTION OF THUNDERSTORM ACTIVITIES

  • 1. Institute of Atmospheric Physics, Academia Sinica, Beijing,NOAA/Aeronomy Laboratory, Boulder, CO. 80303 U.S.A.,NOAA/Aeronomy Laboratory, Boulder, CO. 80303 U.S.A.

Abstract: Meridional and vertical wind velocities of the free atmosphere were observed continuously in mid-latitude summer of 1981 by using Platteville ST radar in the eastern Colorado plains in order to obtain the mesoscale spectra. Power spectra were obtained for both meridional and vertical components at heights of 3.3-7.9 km for meridional and 3.3-17.7 km for vertical. Results show that the “-5/3 law” is a good fit to “meridional” spectra for wave periods ranging from ~3 hr to 2 days which are consistent with other published observations and give further evidence to the existence of a universal -5/3 law in mesoscale atmospheric motions. Results also show that for wave periods shorter than 3 hr (to about 10 min), the spectra obviously depart from the –5/3 law and reflect the significant contribution of thunderstorm activities which frequently happen in the mid-latitude summer. Mesoscale spectra of vertical velocity show some characteristics of gravity waves. The mechanism of the observed spectra is discussed.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return