Advanced Search
Article Contents

Two-wavelength Lidar Measurement of Cloud-aerosol Optical Properties


doi: 10.1007/BF02656830

  • Based on unstability of inversion algorithms of the lidar equation caused by molecular scattering, a new algorithm to derive both the aerosol extinction to backscatter ratio and the extinction coefficient profile is proposed in this paper. As shown in numerical experiments, in case of a ground-based lidar, the error in the aerosol optical depth solution can be less than 10%, and the error of < 6.7 in the aerosol extinction to backscatter ratio can be obtained if the error in the lidar constant is <6%; and in the case of a spaceborne lidar, the present method can be used to de-termine the lidar constant at a short wavelength with an accuracy of being better than 1%.
  • [1] Qiu Jinhuan, 1999: Constraint Inversion Algorithm of Lidar Equation for Deriving Aerosol Optical Property, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 216-228.  doi: 10.1007/BF02973083
    [2] Yang Shu, Zhou Xiuji, Zhao Yanzeng, 1986: A THEORETICAL STUDY OF MULTI-WAVELENGTH LIDAR EXPLORATION OF OPTICAL PROPERTIES OF ATMOSPHERIC AEROSOLS, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 23-38.  doi: 10.1007/BF02680043
    [3] Zhao Yanzeng, Hu Yuliang, Zhao Hongjie, 1984: INTEGRATION METHOD AND RATIO METHOD FOR RETRIEVING EXTINCTION COEFFICIENT FROM LIDAR SIGNALS, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 53-75.  doi: 10.1007/BF03187616
    [4] ZHONG Lingzhi, LIU Liping, DENG Min, ZHOU Xiuji, 2012: Retrieving Microphysical Properties and Air Motion of Cirrus Clouds Based on the Doppler Moments Method Using Cloud Radar, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 611-622.  doi: 10.1007/s00376-011-0112-x
    [5] Jianjun LIU, Zhanqing LI, ZHENG Youfei, Maureen CRIBB, 2015: Cloud-Base Distribution and Cirrus Properties Based on Micropulse Lidar Measurements at a Site in Southeastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 991-1004.  doi: 10.1007/s00376-014-4176-2
    [6] MIN Min, WANG Pucai, James R. CAMPBELL, ZONG Xuemei, XIA Junrong, 2011: Cirrus Cloud Macrophysical and Optical Properties over North China from CALIOP Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 653-664.  doi: 10.1007/s00376-010-0049-5
    [7] Yang Hongwei, Wang Bin, Ji Zhongzhen, 2002: Application of the Artificial Compression Method to the Simulation of Two-Dimensional Frontogenesis, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 863-869.  doi: 10.1007/s00376-002-0051-7
    [8] BIAN Jianchun, CHEN Hongbin, 2008: Statistics of the Tropopause Inversion Layer over Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 381-386.  doi: 10.1007/s00376-008-0381-1
    [9] Wang Hongqi, Zhao Gaoxiang, 2002: Parameterization of Longwave Optical Properties for Water Clouds, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 25-34.  doi: 10.1007/s00376-002-0031-y
    [10] Lin Hai, Xin Miaoxin, Wei Chong, Hao Yaokui, Zou Shouxiang, 1985: GROUND-BASED REMOTE SENSING OF LWC IN CLOUD AND RAINFALL BY A COMBINED DUAL-WAVELENGTH RADAR-RADIOMETER SYSTEM, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 93-103.  doi: 10.1007/BF03179741
    [11] Qiu Jinhuan, 1998: A Method for Spaceborne Synthetic Remote Sensing of Atmospheric Aerosol Optical Depth and Vegetation Reflectance, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 17-30.  doi: 10.1007/s00376-998-0014-8
    [12] Sun Litan, Huang Meiyuan, 1994: Improving the Vorticity-Streamfunction Method to Solve Two-Dimensional Anelastic and Nonhydrostatic Model, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 247-249.  doi: 10.1007/BF02666551
    [13] Huang Sixun, 1996: Inversion and Ill-Posed Problem Solutions in Atmospheric Remote Sensing, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 489-504.  doi: 10.1007/BF03342039
    [14] ZHANG Qiang, LI Hongyu, 2011: A Study of the Relationship between Air Pollutants and Inversion in the ABL over the City of Lanzhou, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 879-886.  doi: 10.1007/s00376-010-0079-z
    [15] Xingmin LI, Yan DONG, Zipeng DONG, Chuanli DU, Chuang CHEN, 2016: Observed Changes in Aerosol Physical and Optical Properties before and after Precipitation Events, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 931-944.  doi: 10.1007/s00376-016-5178-z
    [16] WANG Hong, SHI Guangyu, LI Shuyan, LI Wei, WANG Biao, HUANG Yanbin, 2006: The Impacts of Optical Properties on Radiative Forcing Due to Dust Aerosol, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 431-441.  doi: 10.1007/s00376-006-0431-5
    [17] YU Xingna, ZHU Bin, YIN Yan, FAN Shuxian, CHEN Aijun, 2011: Seasonal Variation of Columnar Aerosol Optical Properties in Yangtze River Delta in China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1326-1335.  doi: 10.1007/s00376-011-0158-9
    [18] Yang Peicai, 1985: SOME CATASTROPHE PROPERTIES OF TWO-LAYER SHEAR FLOW, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 498-507.  doi: 10.1007/BF02678748
    [19] XU Dongmei, Thomas AULIGNÈ, Xiang-Yu HUANG, 2015: A Validation of the Multivariate and Minimum Residual Method for Cloud Retrieval Using Radiance from Multiple Satellites, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 349-362.  doi: 10.1007/s00376-014-3258-5
    [20] ZHANG Chengwei, YU Fan, WANG Chenxi, YANG Jianyu, 2011: Three-dimensional Extension of the Unit-Feature Spatial Classification Method for Cloud Type, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 601-611.  doi: 10.1007/s00376-010-9056-9

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 April 1995
Manuscript revised: 10 April 1995
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Two-wavelength Lidar Measurement of Cloud-aerosol Optical Properties

  • 1. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: Based on unstability of inversion algorithms of the lidar equation caused by molecular scattering, a new algorithm to derive both the aerosol extinction to backscatter ratio and the extinction coefficient profile is proposed in this paper. As shown in numerical experiments, in case of a ground-based lidar, the error in the aerosol optical depth solution can be less than 10%, and the error of < 6.7 in the aerosol extinction to backscatter ratio can be obtained if the error in the lidar constant is <6%; and in the case of a spaceborne lidar, the present method can be used to de-termine the lidar constant at a short wavelength with an accuracy of being better than 1%.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return