Advanced Search

Volume 9 Issue 1

Jan.  1992

Article Contents

Atmospheric NO2 Concentration Measurements Using Differential Absorption Lidar Technique


doi: 10.1007/BF02656932

  • Using the Differential Absorption Lidar (DIAL) technique, two types of approaches, namely, reflection from retroreflector/topographic target and backscatter from atmosphere, are available for studying remotely the atmos-pheric NO2 concentration. The Argon ion lidar system at the Indian Institute of Tropical Meteorology (IITM), Pune, India has been used for the measurements by following both the path-averaged and range-resolved ap-proaches. For the former, a topographic target (hill) is used for determining path-averaged surface concentration. In the latter, spectral properties of atmospheric attenuation is used for making range-resolved measurements in the sur-face layer. The results of the observations collected by following both approaches are presented. The average surface NO2 concentration was found to vary between 0.01 and 0.105 ppm and the range-resolved measurements exhibited higher values suggesting treatment of the lidar data for scattering and extinction effects due to atmospheric aerosols and air molecules, and atmospheric turbulence. Certain modifications that arc suggested to the experimental set-up, data acquisition and analysis to improve the measurements are briefly described.
  • [1] Wang Gengchen, Kong Qinxin, 1987: A STUDY ON NO AND NO2 ABSORPTION PROPERTIES BY USING LINE-TUNABLE CO LASER, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 218-224.  doi: 10.1007/BF02677068
    [2] HUO Yanfeng, DUAN Minzheng, TIAN Wenshou, MIN Qilong, 2015: A Differential Optical Absorption Spectroscopy Method for X CO2 Retrieval from Ground-Based Fourier Transform Spectrometers Measurements of the Direct Solar Beam, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1119-1128.  doi: 10.1007/s00376-015-4213-9
    [3] LI Suwen, LIU Wenqing, XIE Pinhua, LI Ang, QIN Min, DOU Ke, 2007: Measurements of Nighttime Nitrate Radical Concentrations in the Atmosphere by Long-Path Differential Optical Absorption Spectroscopy, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 875-880.  doi: 10.1007/s00376-007-0875-2
    [4] Zhou Xiuji, Qiu Jinhuan, 1984: CHARACTERISTICS OF ATMOSPHERIC EXTINCTION-TO-BACKSCATTERING RATIO IN RUBY LIDAR MEASUREMENTS, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 179-198.  doi: 10.1007/BF02678130
    [5] SHI Chun'e, ZHANG Baoning, 2008: Tropospheric NO2 Columns over Northeastern North America: Comparison of CMAQ Model Simulations with GOME Satellite Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 59-71.  doi: 10.1007/s00376-008-0059-8
    [6] D.B. Jadhav, A.L. Londhe, S. Bose, 1996: Observations of NO2 and O3 during Thunderstorm Activity Using Visible Spectroscopy, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 359-374.  doi: 10.1007/BF02656853
    [7] Dongxu YANG, Janne HAKKARAINEN, Yi LIU, Iolanda IALONGO, Zhaonan CAI, Johanna TAMMINEN, 2023: Detection of Anthropogenic CO2 Emission Signatures with TanSat CO2 and with Copernicus Sentinel-5 Precursor (S5P) NO2 Measurements: First Results, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1-5.  doi: 10.1007/s00376-022-2237-5
    [8] P.C.S. Devara, P. Ernest Raj, 1993: Lidar Measurements of Aerosols in the Tropical Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 365-378.  doi: 10.1007/BF02658142
    [9] Wang Gengchen, Kong Qinxin, 1984: AN EXPERIMENTAL STUDY ON ABSORPTION PROPERTIES OF NO, N0_2, NH_3, CO_2 AND H_2O BY USING LINE-TUNABLE CO LASER, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 112-127.  doi: 10.1007/BF03187622
    [10] Xiaofei LI, Qinghong ZHANG, Huiwen XUE, 2017: The Role of Initial Cloud Condensation Nuclei Concentration in Hail Using the WRF NSSL 2-moment Microphysics Scheme, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1106-1120.  doi: 10.1007/s00376-017-6237-9
    [11] Soo PARK, Seung Jin, Chang Seok, 2013: Effects of an Urban Park and Residential Area on the Atmospheric CO2 Concentration and Flux in Seoul, Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 503-514.  doi: 10.1007/s00376-012-2079-7
    [12] Chengjun XIE, Tongwen WU, Jie ZHANG, Kalli FURTADO, Yumeng ZHOU, Yanwu ZHANG, Fanghua WU, Weihua JIE, He ZHAO, Mengzhe ZHENG, 2023: Spatial Inhomogeneity of Atmospheric CO2 Concentration and Its Uncertainty in CMIP6 Earth System Models, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 2108-2126.  doi: 10.1007/s00376-023-2294-4
    [13] A. Longhetto, S. Ferrarese, C. Cassardo, C. Giraud, F. Apadttla, P. Bacci, P. Bonelli, A. Marzorati, 1997: Relationships between Atmospheric Circulation Patterns and CO2 Greenhouse-Gas Concentration Levels in the Alpine Troposphere, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 309-322.  doi: 10.1007/s00376-997-0052-7
    [14] Jeong-Eun LEE, Sung-Hwa JUNG, Hong-Mok PARK, Soohyun KWON, Pay-Liam LIN, GyuWon LEE, 2015: Classification of Precipitation Types Using Fall Velocity-Diameter Relationships from 2D-Video Distrometer Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1277-1290.  doi: 10.1007/s00376-015-4234-4
    [15] Zhao Bolin, Han Qingyuan, Zhu Yuanjing, 1985: A STUDY ON ABSORPTION CHARACTERISTICS OF THE ATMOSPHERIC WINDOW IN MICROWAVE BAND, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 28-34.  doi: 10.1007/BF03179734
    [16] ZHU Renbin, SUN Liguang, YIN Xuebin, LIU Xiaodong, XING Guangxi, 2004: Summertime Surface N2O Concentration Observed on Fildes Peninsula Antarctica: Correlation with Total Atmospheric O3 and Solar Activity, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 204-210.  doi: 10.1007/BF02915706
    [17] Li Jun, Zhou Fengxian, Gao Qinghuai, 1991: Satellite Data Reduction Using Entropy-preserved Image Compression Technique, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 237-242.  doi: 10.1007/BF02658097
    [18] Yanyu KANG, Guiqian TANG, Qihua LI, Baoxian LIU, Jianfeng CAO, Qihou HU, Yuesi WANG, 2021: Evaluation and Evolution of MAX-DOAS-observed Vertical NO2 Profiles in Urban Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1188-1196.  doi: 10.1007/s00376-021-0370-1
    [19] Yaping Zhou, Ken C. Rutledge, Thomas P. Charlock, Norman G. Loeb, Seiji Kato, 2001: Atmospheric Corrections Using MODTRAN for TOA and Surface BRDF Characteristics from High Resolution Spectroradiometric/Angular Measurements from a Helicopter Platform, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 984-1004.  doi: 10.1007/BF03403518
    [20] Jianjun LIU, Zhanqing LI, ZHENG Youfei, Maureen CRIBB, 2015: Cloud-Base Distribution and Cirrus Properties Based on Micropulse Lidar Measurements at a Site in Southeastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 991-1004.  doi: 10.1007/s00376-014-4176-2

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 1992
Manuscript revised: 10 January 1992
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Atmospheric NO2 Concentration Measurements Using Differential Absorption Lidar Technique

  • 1. Indian Institute of Tropical Meteorology, Pune-411008, India,Indian Institute of Tropical Meteorology, Pune-411008, India

Abstract: Using the Differential Absorption Lidar (DIAL) technique, two types of approaches, namely, reflection from retroreflector/topographic target and backscatter from atmosphere, are available for studying remotely the atmos-pheric NO2 concentration. The Argon ion lidar system at the Indian Institute of Tropical Meteorology (IITM), Pune, India has been used for the measurements by following both the path-averaged and range-resolved ap-proaches. For the former, a topographic target (hill) is used for determining path-averaged surface concentration. In the latter, spectral properties of atmospheric attenuation is used for making range-resolved measurements in the sur-face layer. The results of the observations collected by following both approaches are presented. The average surface NO2 concentration was found to vary between 0.01 and 0.105 ppm and the range-resolved measurements exhibited higher values suggesting treatment of the lidar data for scattering and extinction effects due to atmospheric aerosols and air molecules, and atmospheric turbulence. Certain modifications that arc suggested to the experimental set-up, data acquisition and analysis to improve the measurements are briefly described.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return