Advanced Search
Article Contents

Aircraft Observations of Electrical Conductivity in Warm Clouds


doi: 10.1007/BF02656957

  • Aircraft observations of electrical conductivity and cloud microphsical, dynamical and other electrical parameters were made in warm stratocumulus and cumulus clouds forming during the summer monsoon seasons (June-September) of 1983 and 1985 in the Deccan Plateau region, India. A Gerdien type cylindrical condenser was used for the measurement of electrical conductivity. The variations in the electrical conductivity are observed to be closely associated with the updrafts and downdrafts in the cloud, liquid water content, cloud droplet charge and coro-na discharge current. The value of electrical conductivity in warm clouds is found to be in the order of 10-12 ohm-1 m-1 which is two orders higher than that observed in clear-air at cloud-base levels in some regions by other investigators.Classical static electricity concepts predict reduced conductivity values inside clouds. Cloud electrical conductivi-ty measurements, particularly in warm clouds are few and the results are contradictory. The recently identified mech-anism of vertical mixing in clouds lends support to coovective charge separation mechanism with inherent larger than clear-air values for cloud electrical conductivity and therefore consistent with the measurements reported herein.
  • [1] ZHAO Zhen, LEI Hengchi, 2014: Aircraft Observations of Liquid and Ice in Midlatitude Mixed-Phase Clouds, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 604-610.  doi: 10.1007/s00376-013-3083-2
    [2] Tuanjie HOU, Hengchi LEI, Youjiang HE, Jiefan YANG, Zhen ZHAO, Zhaoxia HU, 2021: Aircraft Measurements of the Microphysical Properties of Stratiform Clouds with Embedded Convection, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 966-982.  doi: 10.1007/s00376-021-0287-8
    [3] Jiefan YANG, Fei YAN, Hengchi LEI, Shuo JIA, Xiaobo DONG, Xiangfeng HU, 2024: Aircraft Observation and Simulation of the Supercooled Liquid Water Layer in a Warm Conveyor Belt over North China, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 529-544.  doi: 10.1007/s00376-023-3068-8
    [4] ZONG Rong, LIU Liping, YIN Yan, 2013: Relationship between Cloud Characteristics and Radar Reflectivity Based on Aircraft and Cloud Radar Co-observations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1275-1286.  doi: 10.1007/s00376-013-2090-7
    [5] WANG Lei, LI Chengcai, YAO Zhigang, ZHAO Zengliang, HAN Zhigang, and WEI Qiang, 2014: Application of Aircraft Observations over Beijing in Cloud Microphysical Property Retrievals from CloudSat, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 926-937.  doi: 10.1007/s00376-013-3156-2
    [6] A. Mary Selvam, R. Vijayakumar, A. S. R. Murty, 1991: Some Physical Aspects of Summer Monsoon Clouds-Comparison of Cloud Model Results with Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 111-124.  doi: 10.1007/BF02657370
    [7] G. K. Manohar, S. S. Kandalgaonkar, S. M. Sholapurkar, 1991: Relaxation Time and Conductivity at a Rural Station: Raichur, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 379-381.  doi: 10.1007/BF03342563
    [8] Lei ZHANG, Xiquan DONG, Aaron KENNEDY, Baike XI, Zhanqing LI, 2017: Evaluation of NASA GISS Post-CMIP5 Single Column Model Simulated Clouds and Precipitation Using ARM Southern Great Plains Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 306-320.  doi: 10.1007/s00376-016-5254-4
    [9] Tianxue ZHENG, Yongbo TAN, Yiru WANG, 2021: Numerical Simulation to Evaluate the Effects of Upward Lightning Discharges on Thunderstorm Electrical Parameters, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 446-459.  doi: 10.1007/s00376-020-0154-z
    [10] CHEN Haoming, YUAN Weihua, LI Jian, YU Rucong, 2012: A Possible Cause for Different Diurnal Variations of Warm Season Rainfall as Shown in Station Observations and TRMM 3B42 Data over the Southeastern Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 193-200.  doi: 10.1007/s00376-011-0218-1
    [11] Zhehan CHEN, Qingqing LI, 2021: Re-examining Tropical Cyclone Fullness Using Aircraft Reconnaissance Data, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1596-1607.  doi: 10.1007/s00376-021-0282-0
    [12] Yuhuan LÜ, Hengchi LEI, Jiefan YANG, 2017: Aircraft Measurements of Cloud-Aerosol Interaction over East Inner Mongolia, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 983-992.  doi: 10.1007/s00376-017-6242-z
    [13] LIU Yu, I.S.A.ISAKSEN, J.K.SUNDET, ZHOU Xiuji, MA Jianzhong, 2003: Impact of Aircraft NOx Emission on NOx and Ozone over China, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 565-574.  doi: 10.1007/BF02915499
    [14] Ye Weizuo, 1986: THE APPLICATION OF DELTA FUNCTION TO THE ALBEDO OF CLOUDS, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 245-251.  doi: 10.1007/BF02682558
    [15] Zeng Zongyong, Ma Chengsheng, 1985: OBSERVATIONS OF TEMPERATURE MICROSTRUCTURE IN THE ATMOSPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 234-242.  doi: 10.1007/BF03179755
    [16] Wang Hongqi, Zhao Gaoxiang, 2002: Parameterization of Longwave Optical Properties for Water Clouds, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 25-34.  doi: 10.1007/s00376-002-0031-y
    [17] WANG Yanhui, ZHANG Guangshu, ZHANG Tong, LI Yajun, WU Bin, and ZHANG Tinglong, 2013: Interaction between adjacent lightning discharges in clouds, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1106-1116.  doi: 10.1007/s00376-012-2008-9
    [18] Xuexu WU, Minghuai WANG, Delong ZHAO, Daniel ROSENFELD, Yannian ZHU, Yuanmou DU, Wei ZHOU, Ping TIAN, Jiujiang SHENG, Fei WANG, Deping DING, 2022: The Microphysical Characteristics of Wintertime Cold Clouds in North China, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 2056-2070.  doi: 10.1007/s00376-022-1274-4
    [19] Huang Runheng, Kuo-Nan Liou, 1985: EFFECTS OF HORIZONTAL ORIENTATION ON THE RADIATIVE PROPERTIES OF ICE CLOUDS, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 20-27.  doi: 10.1007/BF03179733
    [20] Zhao Bolin, Zhen Jinming, Hu Chengda, Du Jinlin, Zhu Yuanjing, Zhang Chengxiang, 1992: Study on Clouds and Marine Atmospheric Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 383-396.  doi: 10.1007/BF02677072

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 1993
Manuscript revised: 10 January 1993
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Aircraft Observations of Electrical Conductivity in Warm Clouds

  • 1. Indian Institute of Tropical Meteorology, Pune 411 008, India,Indian Institute of Tropical Meteorology, Pune 411 008, India,Indian Institute of Tropical Meteorology, Pune 411 008, India,Indian Institute of Tropical Meteorology, Pune 411 008, India

Abstract: Aircraft observations of electrical conductivity and cloud microphsical, dynamical and other electrical parameters were made in warm stratocumulus and cumulus clouds forming during the summer monsoon seasons (June-September) of 1983 and 1985 in the Deccan Plateau region, India. A Gerdien type cylindrical condenser was used for the measurement of electrical conductivity. The variations in the electrical conductivity are observed to be closely associated with the updrafts and downdrafts in the cloud, liquid water content, cloud droplet charge and coro-na discharge current. The value of electrical conductivity in warm clouds is found to be in the order of 10-12 ohm-1 m-1 which is two orders higher than that observed in clear-air at cloud-base levels in some regions by other investigators.Classical static electricity concepts predict reduced conductivity values inside clouds. Cloud electrical conductivi-ty measurements, particularly in warm clouds are few and the results are contradictory. The recently identified mech-anism of vertical mixing in clouds lends support to coovective charge separation mechanism with inherent larger than clear-air values for cloud electrical conductivity and therefore consistent with the measurements reported herein.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return