Advanced Search
Article Contents

The Relationship between the Wintertime Blocking over Greenland and the Sea Ice Distribution over North Atlantic


doi: 10.1007/BF02656970

  • The sea-ice concentration in the Northern Hemisphere, 500 hPa height, sea-level pressure and 1000-500 hPa thickness of monthly mean data are examined for the period 1953-1989, with emphasis on the winter season.Relationships between large-scale patterns of atmospheric variability and sea-ice variability are investigated, making use of the correlation method. The analysis is conducted for the Atlantic sectors. In agreement with earlier studies based upon monthly mean data on sea-ice concentration, the strongest sea-ice pattern is composed of a dipole with opposing centers of action in the Davis Straits / Labrador Sea region and the Greenland and Barents Seas. Its temporal variability is strongly coupled to the atmospheric North Atlantic Oscillation (NAO). The relation-ship between the two patterns is strongest with the atmosphere leading the ocean. The polarity of the NAO is associ-ated with Greenland blocking episodes, during which the influence of the atmosphere is strong enough to temporarily halt the climatological mean advance of the ice edge in some regions and substantially accelerate it in others.The relationships between the fields are indicative of local forcing of sea-ice in most regions, with wind stress and thermodynamic fluxes at the air-sea interface both contributing.
  • [1] YAO Yao, LUO Dehai, 2015: Do European Blocking Events Precede North Atlantic Oscillation Events?, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1106-1118.  doi: 10.1007/s00376-015-4209-5
    [2] Yao YAO, Dehai LUO, 2018: An Asymmetric Spatiotemporal Connection between the Euro-Atlantic Blocking within the NAO Life Cycle and European Climates, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 796-812.  doi: 10.1007/s00376-017-7128-9
    [3] Pavla PEKAROVA, Jan PEKAR, 2007: Teleconnections of Inter-Annual Streamflow Fluctuation in Slovakia with Arctic Oscillation, North Atlantic Oscillation, Southern Oscillation, and Quasi-Biennial Oscillation Phenomena, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 655-663.  doi: 10.1007/s00376-007-0655-z
    [4] HUANG Jianping, JI Mingxia, Kaz HIGUCHI, Amir SHABBAR, 2006: Temporal Structures of the North Atlantic Oscillation and Its Impact on the Regional Climate Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 23-32.  doi: 10.1007/s00376-006-0003-8
    [5] Jie SONG, Jingjing ZHAO, 2020: Observed Long- and Short-lived North Atlantic Oscillation Events: Role of the Stratosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1338-1358.  doi: 10.1007/s00376-020-0021-y
    [6] Laura DE LA TORRE, Luis GIMENO, Juan Antonio A\~NEL, Raquel NIETO, 2007: The Role of the Solar Cycle in the Relationship Between the North Atlantic Oscillation and Northern Hemisphere Surface Temperatures, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 191-198.  doi: 10.1007/s00376-007-0191-x
    [7] S. S. Dugam, S. B. Kakade, 1995: Short-term Climatic Fluctuations in North Atlantic Oscillation and Frequency of Cyclonic Disturbances over North Indian Ocean and Northwest Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 371-376.  doi: 10.1007/BF02656986
    [8] JIANG Zhina, WANG Xin, WANG Donghai, 2015: Exploring the Phase-Strength Asymmetry of the North Atlantic Oscillation Using Conditional Nonlinear Optimal Perturbation, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 671-679.  doi: 10.1007/s00376-014-4094-3
    [9] Yujie JING, Yangchun LI, Yongfu XU, Guangzhou FAN, 2019: Influences of the NAO on the North Atlantic CO2 Fluxes in Winter and Summer on the Interannual Scale, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1288-1298.  doi: 10.1007/s00376-019-8247-2
    [10] LU Riyu, LI Ying, Buwen DONG, 2007: Arctic Oscillation and Antarctic Oscillation in Internal Atmospheric Variability with an Ensemble AGCM Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 152-162.  doi: 10.1007/s00376-007-0152-4
    [11] Wu Bingyi, Wang Jia, 2002: Possible Impacts of Winter Arctic Oscillation on Siberian High, the East Asian Winter Monsoon and Sea-Ice Extent, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 297-320.  doi: 10.1007/s00376-002-0024-x
    [12] Zhe HAN, Shuanglin LI, 2018: Precursor Role of Winter Sea-Ice in the Labrador Sea for Following-Spring Precipitation over Southeastern North America and Western Europe, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 65-74.  doi: 10.1007/s00376-017-6291-3
    [13] Wei HAN, Cunde XIAO, Tingfeng DOU, Minghu DING, 2018: Changes in the Proportion of Precipitation Occurring as Rain in Northern Canada during Spring-Summer from 1979-2015, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1129-1136.  doi: 10.1007/s00376-018-7226-3
    [14] LI Chun, SUN Jilin, 2015: Role of the Subtropical Westerly Jet Waveguide in a Southern China Heavy Rainstorm in December 2013, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 601-612.  doi: 10.1007/s00376-014-4099-y
    [15] Jianping LI, Tiejun XIE, Xinxin TANG, Hao WANG, Cheng SUN, Juan FENG, Fei ZHENG, Ruiqiang DING, 2022: Influence of the NAO on Wintertime Surface Air Temperature over East Asia: Multidecadal Variability and Decadal Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 625-642.  doi: 10.1007/s00376-021-1075-1
    [16] Guokun DAI, Mu MU, Zhe HAN, Chunxiang LI, Zhina JIANG, Mengbin ZHU, Xueying MA, 2023: The Influence of Arctic Sea Ice Concentration Perturbations on Subseasonal Predictions of North Atlantic Oscillation Events, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 2242-2261.  doi: 10.1007/s00376-023-2371-8
    [17] Fei ZHENG, Yue SUN, Qinghua YANG, Longjiang MU, 2021: Evaluation of Arctic Sea-ice Cover and Thickness Simulated by MITgcm, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 29-48.  doi: 10.1007/s00376-020-9223-6
    [18] Zhicheng GE, Xuezhu WANG, Xidong WANG, 2023: Evaluation of the Arctic Sea-Ice Simulation on SODA3 Datasets, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 2302-2317.  doi: 10.1007/s00376-023-2320-6
    [19] Xinrong WU, Shaoqing ZHANG, Zhengyu LIU, 2016: Implementation of a One-Dimensional Enthalpy Sea-Ice Model in a Simple Pycnocline Prediction Model for Sea-Ice Data Assimilation Studies, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 193-207.  doi: 10.1007/s00376-015-5099-2
    [20] Xiaoyi SHEN, Chang-Qing KE, Bin CHENG, Wentao XIA, Mengmeng LI, Xuening YU, Haili LI, 2021: Thinner Sea Ice Contribution to the Remarkable Polynya Formation North of Greenland in August 2018, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1474-1485.  doi: 10.1007/s00376-021-0136-9

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 October 1993
Manuscript revised: 10 October 1993
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Relationship between the Wintertime Blocking over Greenland and the Sea Ice Distribution over North Atlantic

  • 1. Chengdu Institute of Meteorology, Chengdu, Sichuan Province 610041,Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195

Abstract: The sea-ice concentration in the Northern Hemisphere, 500 hPa height, sea-level pressure and 1000-500 hPa thickness of monthly mean data are examined for the period 1953-1989, with emphasis on the winter season.Relationships between large-scale patterns of atmospheric variability and sea-ice variability are investigated, making use of the correlation method. The analysis is conducted for the Atlantic sectors. In agreement with earlier studies based upon monthly mean data on sea-ice concentration, the strongest sea-ice pattern is composed of a dipole with opposing centers of action in the Davis Straits / Labrador Sea region and the Greenland and Barents Seas. Its temporal variability is strongly coupled to the atmospheric North Atlantic Oscillation (NAO). The relation-ship between the two patterns is strongest with the atmosphere leading the ocean. The polarity of the NAO is associ-ated with Greenland blocking episodes, during which the influence of the atmosphere is strong enough to temporarily halt the climatological mean advance of the ice edge in some regions and substantially accelerate it in others.The relationships between the fields are indicative of local forcing of sea-ice in most regions, with wind stress and thermodynamic fluxes at the air-sea interface both contributing.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return