Advanced Search
Article Contents

Study on Atmospheric Ozone in East Asia with Satellite Observation


doi: 10.1007/BF02656990

  • The atmospheric ozone in East Asia has been studied with satellite remote sensing. The relationship between at-mospheric ozone and tropopause height is analyzed and its response to weather processes has been discussed. The mean deviation between the total atmospheric ozone content derived from TOVS data and that got from ground-based Dobson spectrophotometer observation is 3.67%. The total atmospheric ozone content increases with the latitude increasing in East Asia. The correlation coefficient between total ozone content and tropopause height is negative. The average is 74%. The total atmospheric ozone content is closely related to weather processes. Ozone con-tent increases while arctic air mass invading and decreases while tropic air mass coming.
  • [1] WANG Geli, YANG Peicai, 2006: On the Nonlinear Response of Lower Stratospheric Ozone to Nox and ClOx Perturbations for Different CH4 Sources, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 750-757.  doi: 10.1007/s00376-006-0750-6
    [2] J.R. Kulkarni, R.K. Verma, 1993: On the Spatio-Temporal Variations of the Tropopause Height over India and Indian Summer Monsoon Activity, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 481-488.  doi: 10.1007/BF02656973
    [3] Bian Jianchun, Chen Hongbin, Zhao Yanliang, Lü Daren, 2002: Variation Features of Total Atmospheric Ozone in Beijing and Kunming Based on Dobson and TOMS Data, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 279-286.  doi: 10.1007/s00376-002-0022-z
    [4] Wang Qianqian, Wang Yinhui, Song Yu, Qian Yongfu, 1994: Numerical Modelling of the Effects of Ozone on the Summer Atmospheric Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 201-211.  doi: 10.1007/BF02666546
    [5] SHANG Lin, LIU Yi, TIAN Wenshou, ZHANG Yuli, 2015: Effect of Methane Emission Increases in East Asia on Atmospheric Circulation and Ozone, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1617-1627.  doi: 10.1007/s00376-015-5028-4
    [6] Zou Han, Gao Yongqi, 1997: Vertical Ozone Profile over Tibet Using Sage I and II Data, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 505-512.  doi: 10.1007/s00376-997-0068-z
    [7] WANG Xuemei, CHEN Fei, WU Zhiyong, ZHANG Meigen, Mukul TEWARI, Alex GUENTHER, Christine WIEDINMYER, 2009: Impacts of Weather Conditions Modified by Urban Expansion on Surface Ozone: Comparison between the Pearl River Delta and Yangtze River Delta Regions, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 962-972.  doi: 10.1007/s00376-009-8001-2
    [8] Shen YAN, Jie XIANG, Huadong DU, 2019: Determining Atmospheric Boundary Layer Height with the Numerical Differentiation Method Using Bending Angle Data from COSMIC, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 303-312.  doi: 10.1007/s00376-018-7308-2
    [9] Yawei QU, Tijian WANG, Yanfeng CAI, Shekou WANG, Pulong CHEN, Shu LI, Mengmeng LI, Cheng YUAN, Jing WANG, Shaocai XU, 2018: Influence of Atmospheric Particulate Matter on Ozone in Nanjing, China: Observational Study and Mechanistic Analysis, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1381-1395.  doi: 10.1007/s00376-018-8027-4
    [10] Cheng Minghu, Shi Guangyu, Zhou Xiuji, 1990: Numerical Experiment of Combined Infrared and Ultraviolet Radiation Remote Sensing to Determine the Profile and Total Content of Atmospheric Ozone, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 305-319.  doi: 10.1007/BF03179763
    [11] Li Jun, Lu Daren, 1997: Nonlinear Retrieval of Atmospheric Ozone Profile from Solar Backscatter Ultraviolet Measurements: Theory and Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 473-480.  doi: 10.1007/s00376-997-0065-2
    [12] Sophie GODIN-BEEKMANN, Irina PETROPAVLOSKIKH, Stefan REIS, Paul NEWMAN, Wolfgang STEINBRECHT, Markus REX, Michelle L. SANTEE, Richard S. ECKMAN, Xiangdong ZHENG, Matthew B. TULLY, David S. STEVENSON, Paul YOUNG, John PYLE, Mark WEBER, Johanna TAMMINEN, Gina MILLS, Alkis F. BAIS, Clare HEAVISIDE, Christos ZEREFOS, 2017: The Quadrennial Ozone Symposium 2016, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 283-288.  doi: 10.1007/s00376-016-6309-2
    [13] Zhao Bolin, Zhu Yuanjing, Zhang Chengxiang, Zhen Jinming, Zhang WenJan, 1993: Meteorological Satellite TIROS-N TOVS Remote Sensing of Atmospheric Property and Cloud, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 387-392.  doi: 10.1007/BF02656963
    [14] Yuesi WANG, Zirui LIU, 2021: Preface to the Special Issue on Atmospheric Oxidation Capacity, Ozone, and PM2.5 Pollution: Quantification Methods, Formation Mechanisms, Simulation, and Control, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1051-1052.  doi: 10.1007/s00376-021-1001-6
    [15] Zhou Libo, Zou Han, Ji Chongping, Wang Wei, Jian Yongxiao, 2001: The Scandinavia Ozone Loss and Surface Heating, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 454-466.  doi: 10.1007/BF02919324
    [16] Sophie GODIN-BEEKMANN, Irina PETROPAVLOSKIKH, Stefan REIS, Paul NEWMAN, Wolfgang STEINBRECHT, Markus REX, Michelle L. SANTEE, Richard S. ECKMAN, Xiangdong ZHENG, Matthew B. TULLY, David S. STEVENSON, Paul YOUNG, John PYLE, Mark WEBER, Johanna TAMMINEN, Gina MILLS, Alkiviadis F. BAIS, Clare HEAVISIDE, Christos ZEREFOS, 2018: Erratum to: The Quadrennial Ozone Symposium 2016, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 368-369.  doi: 10.1007/s00376-018-0001-7
    [17] L.S. Hingane, 1989: Role of Ozone in the Sodium and Hydroxyl Nightglow, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 89-98.  doi: 10.1007/BF02656920
    [18] V. N. R. Mukku, C. S. Bhosale, 1991: Ozone during Stratospheric Warmings at Uccle, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 251-255.  doi: 10.1007/BF02658099
    [19] Wang Hongqi, Zhou Xiuji, 1984: THE PHOTODISSOCIATION COEFFICIENTS OF OZONE AND OXYGEN IN THE CLOUDY TURBID ATMOSPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 277-.  doi: 10.1007/BF02678140
    [20] Hailiang ZHANG, Yongfu XU, Long JIA, Min XU, 2021: Smog Chamber Study on the Ozone Formation Potential of Acetaldehyde, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1238-1251.  doi: 10.1007/s00376-021-0407-5

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 1994
Manuscript revised: 10 January 1994
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Study on Atmospheric Ozone in East Asia with Satellite Observation

  • 1. Department of Geophysics, Peking University, Beijing 100871,Department of Geophysics, Peking University, Beijing 100871,Department of Geophysics, Peking University, Beijing 100871

Abstract: The atmospheric ozone in East Asia has been studied with satellite remote sensing. The relationship between at-mospheric ozone and tropopause height is analyzed and its response to weather processes has been discussed. The mean deviation between the total atmospheric ozone content derived from TOVS data and that got from ground-based Dobson spectrophotometer observation is 3.67%. The total atmospheric ozone content increases with the latitude increasing in East Asia. The correlation coefficient between total ozone content and tropopause height is negative. The average is 74%. The total atmospheric ozone content is closely related to weather processes. Ozone con-tent increases while arctic air mass invading and decreases while tropic air mass coming.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return