Advanced Search
Article Contents

On Mechanisms of Nucleation of Ice Crystals by Aerodynamic Cooling


doi: 10.1007/BF02656994

  • The investigation of mechanisms of nucleation of ice crystals by aerodynamic cooling produced by supersonic airflow is carried out. Three processes are considered to be the principal causes for aerodynamic cooling and nucleation of ice crystals. They are: adiabatic cooling in supersonic airflow, cooling at the cores of vortices around the edge of airflow and entrapment of ambient stationary air into supersonic airflow. It is thermodynamically confirmed that the temperature lowering in supersonic flow depends on the Mach number M there and stagnant pressure Po at a certain stagnant temperature To. The temperature will decrease by more than 6oC as M increases by 0.1. The influence of Po on cooling is shown through the variation of mass flow rates, which increase with Po.Experiments in laboratory have shown that ice-forming rate produced by supersonic airflow increases from 1011 to 1012 /g as M increases from 1.10 to 1.84 at Po= 5 and 6 atm, and increases from 4.3 × 1011 to 10.3 × 1012 /g as the mass flow rate increases from 3.5 to 5.7 g / s and increases from 1.5 to 5.0 atm at M = 1.80 and To= 25oC. In field experiments the ice concentrations of 50 to 200 per liter in about 2000 m3 were measured when air of about 0.5 g were spurted at a Mach number of M = 1.8 into supercooled fog with temperatures between -0.5oC and -4.6oC. These results are compatible with the prediction of aerodynamics.The snapshot taken in experiments represents the detailed structures of vortex motion around a supersonic airflow.
  • [1] Xu Li, Shi Guangyu, 1985: AN EXACT CALCULATION OF INFRARED COOLING RATE DUE TO WATER VAPOR, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 531-541.  doi: 10.1007/BF02678751
    [2] Qian Yongfu, 1987: RECURRENCE METHOD FOR CALCULATION OF ATMOS-PHERIC COOLING RATE DUE TO INFRARED RADIATION, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 403-413.  doi: 10.1007/BF02656741
    [3] Xun Zhu, 1989: A Parameterization of Cooling Rate Calculation under the Non-LTE Condition: Multi-Level Model, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 403-413.  doi: 10.1007/BF02659075
    [4] MIN Wenbin, CHEN Zhongming, SUN Linsheng, GAO Wenliang, LUO Xiuling, YANG Tingrong, PU Jian, HUANG Guanglun, YANG Xiurong, 2004: A Scheme for Pixel-Scale Aerodynamic Surface Temperature over Hilly Land, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 125-131.  doi: 10.1007/BF02915686
    [5] LU Li, LIU Shaomin, XU Ziwei, YANG Kun, CAI Xuhui, JIA Li, WANG Jiemin, 2009: The Characteristics and Parameterization of Aerodynamic Roughness Length over Heterogeneous Surfaces, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 180-190.  doi: 10.1007/s00376-009-0180-3
    [6] Tong ZHU, Da-Lin ZHANG, 2006: The Impact of the Storm-Induced SST Cooling on Hurricane Intensity, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 14-22.  doi: 10.1007/s00376-006-0002-9
    [7] Shi Guangyu, Qu Yanni, 1986: EFFECTS OF RADIATION MODELS ON THE CALCULATION OF ATMOSPHERIC INFRARED COOLING RATES, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 227-237.  doi: 10.1007/BF02682556
    [8] YANG Jing, BAO Qing, JI Duoying, GONG Daoyi, MAO Rui, ZHANG Ziyin, Seong-Joong KIM, 2014: Simulation and Causes of Eastern Antarctica Surface Cooling Related to Ozone Depletion during Austral Summer in FGOALS-s2, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1147-1156.  doi: 10.1007/s00376-014-3144-1
    [9] Qi SHU, Fangli QIAO, Zhenya SONG, Yajuan SONG, 2018: Link between the Barents Oscillation and Recent Boreal Winter Cooling over the Asian Midlatitudes, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 127-132.  doi: 10.1007/s00376-017-7021-6
    [10] Licheng FENG, Rong-Hua ZHANG, Bo YU, Xue HAN, 2020: Roles of Wind Stress and Subsurface Cold Water in the Second-Year Cooling of the 2017/18 La Niña Event, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 847-860.  doi: 10.1007/s00376-020-0028-4
    [11] Xuan MA, Lei WANG, 2023: The Role of Ozone Depletion in the Lack of Cooling in the Antarctic Upper Stratosphere during Austral Winter, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 619-633.  doi: 10.1007/s00376-022-2047-9
    [12] JIN Liya, WANG Huijun, CHEN Fahu, JIANG Dabang, 2006: A Possible Impact of Cooling over the Tibetan Plateau on the Mid-Holocene East Asian Monsoon Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 543-550.  doi: 10.1007/s00376-006-0543-y
    [13] XIN Xiaoge, Zhaoxin LI, YU Rucong, ZHOU Tianjun, 2008: Impacts of Upper Tropospheric Cooling upon the Late Spring Drought in East Asia Simulated by a Regional Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 555-562.  doi: 10.1007/s00376-008-0555-x
    [14] JIANG Xiaoping, ZHONG Zhong, LIU Chunxia, 2008: The Effect of Typhoon-Induced SST Cooling on Typhoon Intensity: The Case of Typhoon Chanchu (2006), ADVANCES IN ATMOSPHERIC SCIENCES, 25, 1062-1072.  doi: 10.1007/s00376-008-1062-9
    [15] FENG Licheng, ZHANG Rong-Hua, WANG Zhanggui, CHEN Xingrong, 2015: Processes Leading to Second-Year Cooling of the 2010-12 La Niña Event, Diagnosed Using GODAS, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 424-438.  doi: 10.1007/s00376-014-4012-8
    [16] XIN Xiaoge, ZHOU Tianjun, YU Rucong, 2010: Increased Tibetan Plateau Snow Depth:An Indicator of the Connection between Enhanced Winter NAO and Late-Spring Tropospheric Cooling over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 788-794.  doi: 10.1007/s00376-009-9071-x
    [17] LIU Chengyan* and WANG Zhaomin, , 2014: On the Response of the Global Subduction Rate to Global Warming in Coupled Climate Models, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 211-218.  doi: 10.1007/s00376-013-2323-9
    [18] Xinyi XING, Xianghui FANG, Da PANG, Chaopeng JI, 2024: Seasonal Variation of the Sea Surface Temperature Growth Rate of ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 465-477.  doi: 10.1007/s00376-023-3005-x
    [19] Lan Hongdi, Jiang Maoji, 1985: RESEARCH ON THE PHOTO-TEMPERATURE MODEL FOR THE DEVELOPMENTAL RATE OF RICE, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 549-552.  doi: 10.1007/BF02678753
    [20] Li Guoqing, Robin Kung, Richard L. Pfeffer, 1993: Some Effects of Rotation Rate on Planetary-Scale Wave Flows, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 296-306.  doi: 10.1007/BF02658135

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 1994
Manuscript revised: 10 January 1994
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

On Mechanisms of Nucleation of Ice Crystals by Aerodynamic Cooling

  • 1. Department of Atmospheric Science, Nanjing University, Nanjing 210008,Department of Atmospheric Science, Nanjing University, Nanjing 210008,Department of Atmospheric Science, Nanjing University, Nanjing 210008,Department of Atmospheric Science, Nanjing University, Nanjing 210008

Abstract: The investigation of mechanisms of nucleation of ice crystals by aerodynamic cooling produced by supersonic airflow is carried out. Three processes are considered to be the principal causes for aerodynamic cooling and nucleation of ice crystals. They are: adiabatic cooling in supersonic airflow, cooling at the cores of vortices around the edge of airflow and entrapment of ambient stationary air into supersonic airflow. It is thermodynamically confirmed that the temperature lowering in supersonic flow depends on the Mach number M there and stagnant pressure Po at a certain stagnant temperature To. The temperature will decrease by more than 6oC as M increases by 0.1. The influence of Po on cooling is shown through the variation of mass flow rates, which increase with Po.Experiments in laboratory have shown that ice-forming rate produced by supersonic airflow increases from 1011 to 1012 /g as M increases from 1.10 to 1.84 at Po= 5 and 6 atm, and increases from 4.3 × 1011 to 10.3 × 1012 /g as the mass flow rate increases from 3.5 to 5.7 g / s and increases from 1.5 to 5.0 atm at M = 1.80 and To= 25oC. In field experiments the ice concentrations of 50 to 200 per liter in about 2000 m3 were measured when air of about 0.5 g were spurted at a Mach number of M = 1.8 into supercooled fog with temperatures between -0.5oC and -4.6oC. These results are compatible with the prediction of aerodynamics.The snapshot taken in experiments represents the detailed structures of vortex motion around a supersonic airflow.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return