Advanced Search
Article Contents

On the Generalized Theory of Atmospheric Particle Systems


doi: 10.1007/BF02657003

  • Unification is both necessary and challenging for studying atmospheric particle systems, which are polydisperse systems containing particles of different sizes and shapes. A general framework is proposed to realize the first order generalization. Within this generalized framework, (1) atmospheric particle shapes are unified into self-similar fractals; (2) a self-similar particle is characterized by various power-law relationships; (3) by combining these power-law relationships for a single particle with Shannon’s maximum entropy principle and some concepts in statis-tical mechanics, unified maximum likelihoood number size distributions are of the Weibull form for atmospheric particle systems. Frontier disciplines (e. g., scaling, fractal, chaos and hierarchy) are argued to provide potential “tools” for such unification. Several new topics are raised for future research.
  • [1] A. Mary Selvam, J. S. Pethkar, M. K. Kulkarni, 1995: Some Unique Characteristics of Atmospheric Interannual Variability in Rainfall Time Series over India and the United Kingdom, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 377-385.  doi: 10.1007/BF02656987
    [2] Al-Jiboori M. H., Xu Yumao, Qian Yongfu, 2000: Local Similarity Relationships of Non-Dimensional Wind and Temperature Gradient in the Tower-Layer Atmosphere over Beijing City, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 636-648.  doi: 10.1007/s00376-000-0025-6
    [3] Feng Guolin, Cao Hongxing, Gao Xinquan, Dong Wenjie, Chou Jifan, 2001: Prediction of Precipitation during Summer Monsoon with Self-memorial Model, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 701-709.
    [4] Wang Angsheng, N. Fukuta, 1985: A QUANTITATIVE STUDY ON THE GROWTH LAW OF ICE CRYSTALS, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 45-53.  doi: 10.1007/BF03179736
    [5] WU Bo, and ZHOU Tianjun, 2013: Relationships between the East AsianWestern North Pacific Monsoon and ENSO Simulated by FGOALS-s2, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 713-725.  doi: 10.1007/s00376-013-2103-6
    [6] NIU Shengjie, ZHAO Lijuan, LU Chunsong, YANG Jun, WANG Jing, WANG Weiwei, 2012: Observational Evidence for the Monin-Obukhov Similarity under All Stability Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 285-294.  doi: 10.1007/s00376-011-1112-6
    [7] GUO Xiaofeng, ZHANG Hongsheng, CAI Xuhui, KANG Ling, LI Wanbiao, DU Jinlin, 2007: Discrepancy and Applicability of Various Similarity Functions in Flux Calculations Under Stable Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 644-654.  doi: 10.1007/s00376-007-0644-2
    [8] Gong Jiuding, 1986: APPLICATION OF MULTI-DIMENSIONAL SEQUENCE SIMILARITY METHOD IN METEOROLOGY, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 94-104.  doi: 10.1007/BF02680048
    [9] Liu Yangang, 1997: On the Unified Theory of Atmospheric Particle Systems Part II: Self-affine Particles, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 369-388.  doi: 10.1007/s00376-997-0057-2
    [10] Wang Angsheng, 1987: THE QUANTITATIVE GROWTH LAW OF ICE CRYSTALS AND ITS NEW MODEL, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 414-431.  doi: 10.1007/BF02656742
    [11] Zhou Jiabin, Wang Yunkuan, Yang Guiying, Wu Jinsheng, 1994: A Forecasting Model of Vector Similarity in Phase Space for Flood and Drought over the Huanghe-Huaihe-Haihe Plain in China, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 224-229.  doi: 10.1007/BF02666548
    [12] Wang Junbo, Wu Jian, Feng Zhichao, 1986: PROBABILITY OF RECEIVED-POWER FLUCTUATION OF AN OPTICAL SYSTEM IN THE TURBULENT ATMOSPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 371-378.  doi: 10.1007/BF02678657
    [13] Dazhi YANG, Xiang’ao XIA, Martin János MAYER, 2024: A Tutorial Review of the Solar Power Curve: Regressions, Model Chains, and Their Hybridization and Probabilistic Extensions, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3229-4
    [14] Yang Yang, Minqiang Zhou, Wei Wang, Zijun Ning, Feng Zhang, Pucai Wang, 2024: Quantification of CO2 emissions from three power plants in China using OCO-3 satellite measurements, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3293-9
    [15] M. Y. Totagi, 1994: Power and Cross-Spectra for the Turbulent Atmospheric Motion and Transports in the Domain of Wave Number Frequency Space: Theoretical Aspects, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 491-498.  doi: 10.1007/BF02658170
    [16] Zhang Fuqing, Lin Zhenshan, Jiang Quanrong, 1994: The Fractal Dimension Distribution of the Short-Term Climate System in China and It’s Connection with the Monsoon Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 459-462.  doi: 10.1007/BF02658166
    [17] Li Jun, Zhou Fengxian, Gao Qinghuai, 1991: Satellite Data Reduction Using Entropy-preserved Image Compression Technique, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 237-242.  doi: 10.1007/BF02658097
    [18] SUN Jianning, 2009: On the Parameterization of Convective Entrainment: Inherent Relationships among Entrainment Parameters in Bulk Models, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1005-1014.  doi: 10.1007/s00376-009-7222-8
    [19] DING Ruiqiang, LI Jianping, 2012: Relationships between the Limit of Predictability and Initial Error in the Uncoupled and Coupled Lorenz Models, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1078-1088.  doi: 10.1007/s00376-012-1207-8
    [20] M. Sankar-Rao, V. N. Lykossov, E. M. Volodin, A. E. Nikitin, A. I. Degtiarev, Kusuma G. Rao, 1991: Relationships between the Global General Circulation and the Indian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 137-148.  doi: 10.1007/BF02658090

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 October 1995
Manuscript revised: 10 October 1995
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

On the Generalized Theory of Atmospheric Particle Systems

  • 1. Desert Research Institute, Atmospheric Sciences Center, Reno, Nevada 89506-0220, USA

Abstract: Unification is both necessary and challenging for studying atmospheric particle systems, which are polydisperse systems containing particles of different sizes and shapes. A general framework is proposed to realize the first order generalization. Within this generalized framework, (1) atmospheric particle shapes are unified into self-similar fractals; (2) a self-similar particle is characterized by various power-law relationships; (3) by combining these power-law relationships for a single particle with Shannon’s maximum entropy principle and some concepts in statis-tical mechanics, unified maximum likelihoood number size distributions are of the Weibull form for atmospheric particle systems. Frontier disciplines (e. g., scaling, fractal, chaos and hierarchy) are argued to provide potential “tools” for such unification. Several new topics are raised for future research.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return