Advanced Search

Volume 8 Issue 1

Jan.  1991

Article Contents

Variations in the Atmospheric Electric Field at Tropical Station during 1930-1987


doi: 10.1007/BF02657368

  • The variations noticed in the atmospheric electric field recorded at Pune (18o32’N, 73o51’E, 559 m ASL), a tropi-cal inland station located in Deccan Plateau, India, during the period 1930-1987, have been examined in relation to the variations observed in the Angstrom turbidity coefficient (β) and selected meteorological parameters. The month-ly and annual mean values of the atmospheric electric field, Angstrom turbidity coefficient (β), rainfall, temperature and relative humidity for the years 1930-1938, 1957-1958, 1964-1965, 1973-1974 and 1987 were considered in the study.The results of the above study indicated gradual increases in the atmospheric electric field over the period of study (1930-1987) which is statistically significant at less than 5% level. The increases noticed during different periods varied from 30 to 109 %. The increase noticed during the period (1930-1938) and (1973-1974) was maximum (109%). The Angstrom turbidity coefficient also showed systematic increases during the period of study, which is consistent. The diurnal curve of the atmospheric electric field at the station by and large, showed a double oscillation, which is generally observed in the continental environments.
  • [1] Poonam Mehra, 1989: Lunar Phases and Atmospheric Electric Field, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 239-246.  doi: 10.1007/BF02658019
    [2] Poonam Sikka, A. Mary Selvam, A.S. Ramachandra Murty, 1988: POSSIBLE SOLAR INFLUENCE ON ATMOSPHERIC ELECTRIC FIELD, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 217-228.  doi: 10.1007/BF02656783
    [3] Poonam Mehra, 1990: Association among Geomagnetic Activity, Atmospheric Electric Field and Selected Meteorological Parameters, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 171-177.  doi: 10.1007/BF02919154
    [4] G. K. Manohar, S. M. Sholapurkar, S. S. Kandalgaonkar, 1990: Off-Shore Sea Surface Electric Field Investigations around the Indian Sub-Continent during 9-20 May 1983, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 453-462.  doi: 10.1007/BF03342564
    [5] P. Ernest Raj, P.C.S. Devara, 1997: Seasonal Variations in the Vertical Structure of Water Vapor Optical Depth in the Lower Troposphere over a Tropical Station, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 103-110.  doi: 10.1007/s00376-997-0062-5
    [6] P. Ernest Raj, P.C.S. Devara, 1997: Seasonal Variations in the Vertical Structure of Water Vapor Optical Depth in the Lower Troposphere over a Tropical Station, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 425-432.  doi: 10.1007/s00376-997-0049-2
    [7] Qu Shaohou, Takashi Yamanouchi, 1991: Variations of Atmospheric Carbon Dioxide Concentration and Greenhouse Effect at Syowa Station (69o00’S, 39o35’E), Antarctica, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 363-368.  doi: 10.1007/BF02919619
    [8] REN Fumin, WANG Yongmei, WANG Xiaoling, LI Weijing, 2007: Estimating Tropical Cyclone Precipitation from Station Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 700-711.  doi: 10.1007/s00376-007-0700-y
    [9] ZHOU Li, XU Xiangde, DING Guoan, ZHOU Mingyu, CHENG Xinghong, 2005: Diurnal Variations of Air Pollution and Atmospheric Boundary Layer Structure in Beijing During Winter 2000/2001, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 126-132.  doi: 10.1007/BF02930876
    [10] ZHAO Haikun, WU Liguang*, and WANG Ruifang, 2014: Decadal Variations of Intense Tropical Cyclones over the Western North Pacific during 19482010, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 57-65.  doi: 10.1007/s00376-013-3011-5
    [11] WANG Donghai, P. MINNIS, T. P. CHARLOCK, D. K. ZHOU, F. G. ROSE, W. L. SMITH, W. L. SMITH Jr., L. NGUYEN, 2007: Real-Time Mesoscale Forecast Support During the CLAMS Field Campaign, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 599-605.  doi: 10.1007/s00376-007-0599-3
    [12] Zhang Qin, Zhu Yufeng, Ni Yunqi, 1995: QBO Features of Tropical Pacific wind Stress Field with the Relation to El Nino, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 87-94.  doi: 10.1007/BF02661290
    [13] CHEN Haoming, YUAN Weihua, LI Jian, YU Rucong, 2012: A Possible Cause for Different Diurnal Variations of Warm Season Rainfall as Shown in Station Observations and TRMM 3B42 Data over the Southeastern Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 193-200.  doi: 10.1007/s00376-011-0218-1
    [14] YU Yu, CHEN Hongbin, XIA Xiangao, XUAN Yuejian, YU Ke, 2010: Significant Variations of Surface Albedo during a Snowy Period at Xianghe Observatory, China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 80-86.  doi: 10.1007/s00376-009-8151-2
    [15] Chang-Kyun PARK, Minhee CHANG, Chang-Hoi HO, Kyung-Ja HA, Jinwon KIM, Byung-Ju SOHN, 2021: Two Types of Diurnal Variations in Heavy Rainfall during July over Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2201-2211.  doi: 10.1007/s00376-021-1178-8
    [16] You Ronggao, Hong Zhongxiang, Lu Weixiu, Zhao Deshan, Kong Qinxin, Zhu Wenqin, 1985: VARIATIONS OF ATMOSPHERIC AEROSOL CONCENTRATION AND SIZE DISTRIBUTION WITH TIME AND ALTITUDE IN THE BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 243-250.  doi: 10.1007/BF03179756
    [17] YU Jianhua, Benjamin GUINOT, YU Tong, WANG Xin, LIU Wenqing, 2005: Seasonal Variations of Number Size Distributions and Mass Concentrations of Atmospheric Particles in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 401-407.  doi: 10.1007/BF02918753
    [18] Bo SUN, 2018: Asymmetric Variations in the Tropical Ascending Branches of Hadley Circulations and the Associated Mechanisms and Effects, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 317-333.  doi: 10.1007/s00376-017-7089-z
    [19] Xiaohao QIN, Wansuo DUAN, Pak-Wai CHAN, Boyu CHEN, Kang-Ning HUANG, 2023: Effects of Dropsonde Data in Field Campaigns on Forecasts of Tropical Cyclones over the Western North Pacific in 2020 and the Role of CNOP Sensitivity, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 791-803.  doi: 10.1007/s00376-022-2136-9
    [20] Kexin CHEN, Guanghua CHEN, Donglei SHI, 2023: Modulation of the Wind Field Structure of Initial Vortex on the Relationship between Tropical Cyclone Size and Intensity, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1707-1721.  doi: 10.1007/s00376-023-2233-4

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 1991
Manuscript revised: 10 January 1991
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Variations in the Atmospheric Electric Field at Tropical Station during 1930-1987

  • 1. Indian Institute of Tropical Meteorology, Pune-411005, India,Indian Institute of Tropical Meteorology, Pune-411005, India

Abstract: The variations noticed in the atmospheric electric field recorded at Pune (18o32’N, 73o51’E, 559 m ASL), a tropi-cal inland station located in Deccan Plateau, India, during the period 1930-1987, have been examined in relation to the variations observed in the Angstrom turbidity coefficient (β) and selected meteorological parameters. The month-ly and annual mean values of the atmospheric electric field, Angstrom turbidity coefficient (β), rainfall, temperature and relative humidity for the years 1930-1938, 1957-1958, 1964-1965, 1973-1974 and 1987 were considered in the study.The results of the above study indicated gradual increases in the atmospheric electric field over the period of study (1930-1987) which is statistically significant at less than 5% level. The increases noticed during different periods varied from 30 to 109 %. The increase noticed during the period (1930-1938) and (1973-1974) was maximum (109%). The Angstrom turbidity coefficient also showed systematic increases during the period of study, which is consistent. The diurnal curve of the atmospheric electric field at the station by and large, showed a double oscillation, which is generally observed in the continental environments.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return