Advanced Search

Volume 9 Issue 2

Mar.  1992

Article Contents

Construction of Vertical Wind Profile from Satellite-Derived Winds for Objective Analysis of Wind Field


doi: 10.1007/BF02657514

  • During summer Monex-79, a variety of observing systems viz. research ships, research aircrafts, constant pres-sure balloons and geostationary satellite etc. were deployed, besides the regular conventional observations The pur-pose of these additional systems was to make the best possible data for the studies on various aspects of monsoon cir-culation. The present study is aimed at the construction of vertical wind profile using cloud motion vectors obtained from GOES (I-O) satellite and to examine whether the constructed wind profiles improves the representation of the monsoon system, flow pattern etc. in the objective analysis. For this purpose, climatological normals of the wind field are considered as the initial guess and the objective analyses of the wind field are made with, first using only data from conventional observations over land areas, subsequently including the constructed winds from cloud motion vectors. These analyses are then compared with the standard analyses of wind field obtained from Quick Look Atlas by T. N. Krishnamurti et al. (1979).It is inferred that satellite estimated mean wind profiles show good agreement with the mean wind profiles of the research ships with RMS errors less than 5 mps below 500 hPa and less than 8 mps above 500 hPa. It is further infer-red that the inclusion of constructed winds shows a positive impact on the objective analysis and improvement is seen to be more marked in the data-sparse region of the Arabian sea. Analyses which include the constructed winds show better agreement with the standard analysis, than the analyses obtained using only conventional winds. Thus, results of our study suggest that the wind profiles constructed using cloud motion vectors are of potential use in objective analysis to depict the major circulation features over the Indian region.
  • [1] S.K. Sinha, D.R. Talwalkar, S.G. Narkhedkar, S. Rajamani, 1989: A Scheme for Objective Analysis of Wind Field Incorporating Multi-Weighting Functions in the Optimum Interpolation Method, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 435-446.  doi: 10.1007/BF03342547
    [2] S.K. Sinha, S. Rajamani, 1995: Multivariate Objective Analysis of Wind and Height Fields in the Tropics, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 233-244.  doi: 10.1007/BF02656836
    [3] Kong Fanyou, Mao jietai, 1994: A Model Study of Three Dimensional Wind Field Analysis from Dual-Doppler Radar Data, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 162-174.  doi: 10.1007/BF02666543
    [4] Chenbin XUE, Zhiying DING, Xinyong SHEN, Xian CHEN, 2022: Three-Dimensional Wind Field Retrieved from Dual-Doppler Radar Based on a Variational Method: Refinement of Vertical Velocity Estimates, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 145-160.  doi: 10.1007/s00376-021-1035-9
    [5] Wang Ling, Xu Yinzi, 1997: The Influence of Weakly-Nonlinear Vertical Advection on the Wind Field of PBL with Large-Scale Orography, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 59-68.  doi: 10.1007/s00376-997-0044-7
    [6] GAO Hao, JIA Gensuo, 2013: Assessing Disagreement and Tolerance of Misclassification of Satellite-derived Land Cover Products Used in WRF Model Applications, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 125-141.  doi: 10.1007/s00376-012-2037-4
    [7] Wang Shaowu, Todd P. Mitchell, John M. Wallace, 1987: ZONAL AND MERIDIONAL CIRCULATIONS IN THE EQUA-TORIALZONE AS DEDUCED FROM THE DIVERGENCE FIELD OF THE SURFACE WIND, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 432-446.  doi: 10.1007/BF02656743
    [8] Xue Feng, Zeng Qingcun, 1999: Diagnostic Study on Seasonality and Interannual Variability of Wind Field, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 537-543.  doi: 10.1007/s00376-999-0029-9
    [9] S. K. Sinha, S. G. Narkhedkar, D. R. Talwalkar, S. Rajamani, 1992: Some Experiments with Multivariate Objective Analysis Scheme of Heights and Winds Using Optimum Interpolation, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 431-440.  doi: 10.1007/BF02677075
    [10] Federico OTERO, Diego C. ARANEO, 2022: Forecasting Zonda Wind Occurrence with Vertical Sounding Data, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 161-177.  doi: 10.1007/s00376-021-1007-0
    [11] Liu Shikuo, Peng Weihong, Huang Feng, Chi Dongyan, 2002: Effects of Turbulent Dispersion on the Wind Speed Profile in the Surface Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 794-806.  doi: 10.1007/s00376-002-0045-5
    [12] ZHAO Kun, LIU Guoqing, GE Wenzhong, DANG Renqing, Takao TAKEDA, 2003: Retrieval of Single-Doppler Radar Wind Field by Nonlinear Approximation, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 195-204.  doi: 10.1007/s00376-003-0004-9
    [13] Nian LIU, Zhongwei YAN, Xuan TONG, Jiang JIANG, Haochen LI, Jiangjiang XIA, Xiao LOU, Rui REN, Yi FANG, 2022: Meshless Surface Wind Speed Field Reconstruction Based on Machine Learning, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1721-1733.  doi: 10.1007/s00376-022-1343-8
    [14] Zhang Qin, Zhu Yufeng, Ni Yunqi, 1995: QBO Features of Tropical Pacific wind Stress Field with the Relation to El Nino, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 87-94.  doi: 10.1007/BF02661290
    [15] P.C.S. Devara, G. Chandrasekhar, M.I. Ahmed, 1989: Some Aspects of the Diurnal and Semidiurnal Tidal Wind Field in Meteor Zone, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 357-364.  doi: 10.1007/BF02661541
    [16] Lei Xiaoen, 1985: EFFECT OF WIND VERTICAL SHEAR ON DIFFUSION CHARACTERISTICS IN THE MESOSCALE RANGE, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 225-233.  doi: 10.1007/BF03179754
    [17] Fang Zhifang, John M. Wallace, David W. J. Thompson, 2001: The Relationship between the Meridional Profile of Zonal mean Geostrophic Wind and Station Wave at 500 hPa, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 692-700.
    [18] Suping NIE, Tongwen WU, Yong LUO, Xueliang DENG, Xueli SHI, Zaizhi WANG, Xiangwen LIU, Jianbin HUANG, 2016: A Strategy for Merging Objective Estimates of Global Daily Precipitation from Gauge Observations, Satellite Estimates, and Numerical Predictions, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 889-904.  doi: 10.1007/s00376-016-5223-y
    [19] Jiang Hao, Wang Keli, 2001: Analysis of the Surface Temperature on the Tibetan Plateau from Satellite, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1215-1223.  doi: 10.1007/s00376-001-0035-z
    [20] Ravidho RAMADHAN, MARZUKI, Mutya VONNISA, HARMADI, Hiroyuki HASHIGUCHI, Toyoshi SHIMOMAI, 2020: Diurnal Variation in the Vertical Profile of the Raindrop Size Distribution for Stratiform Rain as Inferred from Micro Rain Radar Observations in Sumatra, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 832-846.  doi: 10.1007/s00376-020-9176-9

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 1992
Manuscript revised: 10 March 1992
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Construction of Vertical Wind Profile from Satellite-Derived Winds for Objective Analysis of Wind Field

  • 1. Indian Institute of Tropical Meteorology, Pune-411008,Indian Institute of Tropical Meteorology, Pune-411008,Indian Institute of Tropical Meteorology, Pune-411008,Indian Institute of Tropical Meteorology, Pune-411008

Abstract: During summer Monex-79, a variety of observing systems viz. research ships, research aircrafts, constant pres-sure balloons and geostationary satellite etc. were deployed, besides the regular conventional observations The pur-pose of these additional systems was to make the best possible data for the studies on various aspects of monsoon cir-culation. The present study is aimed at the construction of vertical wind profile using cloud motion vectors obtained from GOES (I-O) satellite and to examine whether the constructed wind profiles improves the representation of the monsoon system, flow pattern etc. in the objective analysis. For this purpose, climatological normals of the wind field are considered as the initial guess and the objective analyses of the wind field are made with, first using only data from conventional observations over land areas, subsequently including the constructed winds from cloud motion vectors. These analyses are then compared with the standard analyses of wind field obtained from Quick Look Atlas by T. N. Krishnamurti et al. (1979).It is inferred that satellite estimated mean wind profiles show good agreement with the mean wind profiles of the research ships with RMS errors less than 5 mps below 500 hPa and less than 8 mps above 500 hPa. It is further infer-red that the inclusion of constructed winds shows a positive impact on the objective analysis and improvement is seen to be more marked in the data-sparse region of the Arabian sea. Analyses which include the constructed winds show better agreement with the standard analysis, than the analyses obtained using only conventional winds. Thus, results of our study suggest that the wind profiles constructed using cloud motion vectors are of potential use in objective analysis to depict the major circulation features over the Indian region.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return