Advanced Search
Article Contents

Numerical Simulation of Regional Short-Range Climate Anomalies


doi: 10.1007/BF02658139

  • With the high-speed development of numerical weather prediction, since the later 1980’s, the prediction of short-range climate anomalies has attracted worldwide meteorologists’ attention. What the so called short-range re-fers to the time scale from one month to one season or more. In dealing with the problem of short-range climate pre-diction, two points are needed noticing: one is the basic research to explore or investigate the mechanism of variability of the slow varying components which mainly include internal dynamics of extratropics, external forcings and tropical dynamics, and the other is the modeling efforts to simulate the process of the long-term evolution of the signal which include the improvement of model quality, stochastic prediction and the air-sea-coupled model (Miyakoda et al.,1986). Previous researches on the numerical prediction of short-term climate anomalies are mostly concentrated in the analysis of variables with global spatial scale, especially the global general atmospheric circulation analysis.As to the simulation or prediction of regional short-term climate anomalies, there exist many difficulties and problems. Though some meteorologists are devoting themself to this field, up to now, they have not reached satisfac-tory results. As a primary effort, by using the 2-level general atmospheric circulation model developed in the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP-AGCM) (Zeng et al., 1989), and taking the year of 1985 as a case, a numerical simulation of regional short-term climate change is completed. We pay high attention to the predictand of anomalous summer rainfall in the Yangtze River and Yellow River valleys, especially its month-to-month variation.
  • [1] HU Dingzhu, TIAN Wenshou, XIE Fei, SHU Jianchuan, and Sandip DHOMSE, , 2014: Effects of Meridional Sea Surface Temperature Changes on Stratospheric Temperature and Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 888-900.  doi: 10.1007/s00376-013-3152-6
    [2] Huang Ronghui, Wu Bingyi, Sung-Gil Hong, Jai-Ho Oh, 2001: Sensitivity of Numerical Simulations of the East Asian Summer Monsoon Rainfall and Circulation to Different Cumulus Parameterization Schemes, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 23-41.  doi: 10.1007/s00376-001-0002-8
    [3] Liu Huaqiang, Qian Yongfu, 1999: Numerical Simulations of Intense Meiyu Rainfall in 1991 over the Changjiang and Huaihe River Valleys by a Regional Climate Model with p-б Incorporated Coordinate System, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 395-404.  doi: 10.1007/s00376-999-0018-z
    [4] Zhang Yaocun, Qian Yongfu, 1999: Numerical Simulation of the Regional Ocean Circulation in the Coastal Areas of China, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 443-450.  doi: 10.1007/s00376-999-0022-3
    [5] YANG Jing, BAO Qing, JI Duoying, GONG Daoyi, MAO Rui, ZHANG Ziyin, Seong-Joong KIM, 2014: Simulation and Causes of Eastern Antarctica Surface Cooling Related to Ozone Depletion during Austral Summer in FGOALS-s2, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1147-1156.  doi: 10.1007/s00376-014-3144-1
    [6] Song Yukuan, Chen Longxun, Dong Min, 1994: Numerical Simulation for the Impact of Deforestation on Climate in China and Its Neighboring Regions, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 212-223.  doi: 10.1007/BF02666547
    [7] Guo Yufu, Zhao Yan, Wang Jia, 2002: Numerical Simulation of the Relationships between the 1998 Yangtze River Valley Floods and SST Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 391-404.  doi: 10.1007/s00376-002-0074-0
    [8] YANG Junli, WANG Bin, GUO Yufu, WAN Hui, JI Zhongzhen, 2007: Comparison Between GAMIL, and CAM2 on Interannual Variability Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 82-88.  doi: 10.1007/s00376-007-0082-1
    [9] Zheng Weizhong, Ni Yunqi, 1999: Numerical Experiments for the influence of the Transition Zone Migration on Summer Climate in North China, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 367-377.  doi: 10.1007/s00376-999-0016-1
    [10] Seung-Woo LEE, Dong-Kyou LEE, Dong-Eon CHANG, 2011: Impact of Horizontal Resolution and Cumulus Parameterization Scheme on the Simulation of Heavy Rainfall Events over the Korean Peninsula, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1-15.  doi: 10.1007/s00376-010-9217-x
    [11] GAO Rong, DONG Wenjie, WEI Zhigang, 2008: Simulation and Analysis of China Climate Using Two-Way Interactive Atmosphere-Vegetation Model (RIEMS-AVIM), ADVANCES IN ATMOSPHERIC SCIENCES, 25, 1085-1097.  doi: 10.1007/s00376-008-1085-2
    [12] Hyo-Eun JI, Soon-Hwan LEE, Hwa-Woon LEE, 2013: Characteristics of Sea Breeze Front Development with Various Synoptic Conditions and Its Impact on Lower Troposphere Ozone Formation, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1461-1478.  doi: 10.1007/s00376-013-2256-3
    [13] ZHAO Haikun, WU Liguang*, and WANG Ruifang, 2014: Decadal Variations of Intense Tropical Cyclones over the Western North Pacific during 19482010, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 57-65.  doi: 10.1007/s00376-013-3011-5
    [14] Chen Yuejuan, Zhang Hong, Bi Xunqiang, 1998: Numerical Experiment for the Impact of the Ozone Hole over Antarctica on the Global Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 300-311.  doi: 10.1007/s00376-998-0002-z
    [15] HONG Bo, WANG Dongxiao, 2008: Sensitivity Study of the Seasonal Mean Circulation in the Northern South China Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 824-840.  doi: 10.1007/s00376-008-0824-8
    [16] YUAN Fang, CHEN Wen, ZHOU Wen, 2012: Analysis of the Role Played by Circulation in the Persistent Precipitation over South China in June 2010, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 769-781.  doi: 10.1007/s00376-012-2018-7
    [17] Yu ZHAO, Anmin DUAN, Guoxiong WU, 2018: Interannual Variability of Late-spring Circulation and Diabatic Heating over the Tibetan Plateau Associated with Indian Ocean Forcing, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 927-941.  doi: 10.1007/s00376-018-7217-4
    [18] REN Baohua, HUANG Ronghui, 2003: 30-60-day Oscillations of Convection and Circulation Associated with the Thermal State of the Western Pacific Warm Pool during Boreal Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 781-793.  doi: 10.1007/BF02915403
    [19] Ren Baohua, Huang Ronghui, 2002: 10-25-Day Intraseasonal Variations of Convection and Circulation Associated with Thermal State of the Western Pacific Warm Pool during Boreal Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 321-336.  doi: 10.1007/s00376-002-0025-9
    [20] Li Weiping, Theo Chidiezie Chineke, Liu Xin, Wu Guoxiong, 2001: Atmospheric Diabatic Heating and Summertime Circulation in Asia-Africa Area, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 257-269.  doi: 10.1007/s00376-001-0018-0

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 1993
Manuscript revised: 10 July 1993
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Numerical Simulation of Regional Short-Range Climate Anomalies

  • 1. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100080,LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100080

Abstract: With the high-speed development of numerical weather prediction, since the later 1980’s, the prediction of short-range climate anomalies has attracted worldwide meteorologists’ attention. What the so called short-range re-fers to the time scale from one month to one season or more. In dealing with the problem of short-range climate pre-diction, two points are needed noticing: one is the basic research to explore or investigate the mechanism of variability of the slow varying components which mainly include internal dynamics of extratropics, external forcings and tropical dynamics, and the other is the modeling efforts to simulate the process of the long-term evolution of the signal which include the improvement of model quality, stochastic prediction and the air-sea-coupled model (Miyakoda et al.,1986). Previous researches on the numerical prediction of short-term climate anomalies are mostly concentrated in the analysis of variables with global spatial scale, especially the global general atmospheric circulation analysis.As to the simulation or prediction of regional short-term climate anomalies, there exist many difficulties and problems. Though some meteorologists are devoting themself to this field, up to now, they have not reached satisfac-tory results. As a primary effort, by using the 2-level general atmospheric circulation model developed in the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP-AGCM) (Zeng et al., 1989), and taking the year of 1985 as a case, a numerical simulation of regional short-term climate change is completed. We pay high attention to the predictand of anomalous summer rainfall in the Yangtze River and Yellow River valleys, especially its month-to-month variation.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return