Advanced Search

Volume 6 Issue 3

Jul.  1989

Article Contents

Some Aspects of the Diurnal and Semidiurnal Tidal Wind Field in Meteor Zone


doi: 10.1007/BF02661541

  • The diurnal and semidiurnal tidal wind field variations in the altitudes between 80 and 100 km of the earth’s atmosphere over a mid-latitude station are studied by means of the phases of the zonal and meridional wind measurements made at Atlanta (34oN, 84oW). The rotation of diurnal tidal wind vector is seen to be clockwise at lower heights (80-86 km), swinging between clockwise and unti-clockwise at intermediate heights (88-96 km) and anti-clockwise at higher-heights (96- 100 km). The senses of rotation of diurnal and semidiurnal tidal wind vectors are compared between the stations located in the same and opposite hemispheres. The results are consistent with the tidal theory in the case of Atlanta and Adelaide (35oS, 139oE) whereas in the case of other stations considered in the present study, they showed marked variations.
  • [1] S. K. Sinha, D. R. Talwalkar, S. Rajamani, 1987: ON SOME ASPECTS OF OBJECTIVE ANALYSIS OF HUMI-DITY OVER INDIAN REGION BY THE OPTIMUM INTERPOLATION METHOD, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 332-342.  doi: 10.1007/BF02663603
    [2] A. Mary Selvam, R. Vijayakumar, A. S. R. Murty, 1991: Some Physical Aspects of Summer Monsoon Clouds-Comparison of Cloud Model Results with Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 111-124.  doi: 10.1007/BF02657370
    [3] N. R. Parija, S. K. Dash, 1995: Some Aspects of the Characteristics of Monsoon Disturbances Using a Combined Barotropic-Baroclinic Model, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 487-506.  doi: 10.1007/BF02657007
    [4] Xue Feng, Zeng Qingcun, 1999: Diagnostic Study on Seasonality and Interannual Variability of Wind Field, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 537-543.  doi: 10.1007/s00376-999-0029-9
    [5] Dongang LIU, Qinghua YANG, Andrei TSARAU, Yongtao HUANG, Xuewei LI, 2023: A Parameterization Scheme for Wind Wave Modules that Includes the Sea Ice Thickness in the Marginal Ice Zone, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 2279-2287.  doi: 10.1007/s00376-023-2188-5
    [6] ZHAO Kun, LIU Guoqing, GE Wenzhong, DANG Renqing, Takao TAKEDA, 2003: Retrieval of Single-Doppler Radar Wind Field by Nonlinear Approximation, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 195-204.  doi: 10.1007/s00376-003-0004-9
    [7] Nian LIU, Zhongwei YAN, Xuan TONG, Jiang JIANG, Haochen LI, Jiangjiang XIA, Xiao LOU, Rui REN, Yi FANG, 2022: Meshless Surface Wind Speed Field Reconstruction Based on Machine Learning, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1721-1733.  doi: 10.1007/s00376-022-1343-8
    [8] Zhang Qin, Zhu Yufeng, Ni Yunqi, 1995: QBO Features of Tropical Pacific wind Stress Field with the Relation to El Nino, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 87-94.  doi: 10.1007/BF02661290
    [9] P. N. Mahajan, D. R. Talwalkar, S. Nair, S. Rajamani, 1992: Construction of Vertical Wind Profile from Satellite-Derived Winds for Objective Analysis of Wind Field, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 237-246.  doi: 10.1007/BF02657514
    [10] Chao LIU, Li FU, Dan YANG, David R. MILLER, Junming WANG, 2020: Non-Gaussian Lagrangian Stochastic Model for Wind Field Simulation in the Surface Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 90-104.  doi: 10.1007/s00376-019-9052-7
    [11] Wang Ling, Xu Yinzi, 1997: The Influence of Weakly-Nonlinear Vertical Advection on the Wind Field of PBL with Large-Scale Orography, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 59-68.  doi: 10.1007/s00376-997-0044-7
    [12] Wang Shaowu, Todd P. Mitchell, John M. Wallace, 1987: ZONAL AND MERIDIONAL CIRCULATIONS IN THE EQUA-TORIALZONE AS DEDUCED FROM THE DIVERGENCE FIELD OF THE SURFACE WIND, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 432-446.  doi: 10.1007/BF02656743
    [13] S.K. Sinha, D.R. Talwalkar, S.G. Narkhedkar, S. Rajamani, 1989: A Scheme for Objective Analysis of Wind Field Incorporating Multi-Weighting Functions in the Optimum Interpolation Method, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 435-446.  doi: 10.1007/BF03342547
    [14] Kexin CHEN, Guanghua CHEN, Donglei SHI, 2023: Modulation of the Wind Field Structure of Initial Vortex on the Relationship between Tropical Cyclone Size and Intensity, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1707-1721.  doi: 10.1007/s00376-023-2233-4
    [15] Kong Fanyou, Mao jietai, 1994: A Model Study of Three Dimensional Wind Field Analysis from Dual-Doppler Radar Data, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 162-174.  doi: 10.1007/BF02666543
    [16] Chenbin XUE, Zhiying DING, Xinyong SHEN, Xian CHEN, 2022: Three-Dimensional Wind Field Retrieved from Dual-Doppler Radar Based on a Variational Method: Refinement of Vertical Velocity Estimates, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 145-160.  doi: 10.1007/s00376-021-1035-9
    [17] WANG Bin, XIE Xin, LI Lijuan, 2009: A Review on Aspects of Climate Simulation Assessment, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 736-747.  doi: 10.1007/s00376-009-9038-y
    [18] LIU Guimei, WANG Hui, SUN Song, HAN Boping, 2003: Numerical Study on the Velocity Structure around Tidal Fronts in the Yellow Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 453-460.  doi: 10.1007/BF02690803
    [19] Rolf Müller, 1993: Stable and Unstable Eigensolutions of Laplace’s Tidal Equations for Zonal Wavenumber Zero, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 21-40.  doi: 10.1007/BF02656951
    [20] Hui-Wen LAI, Fuqing ZHANG, Eugene E. CLOTHIAUX, David R. STAUFFER, Brian J. GAUDET, Johannes VERLINDE, Deliang CHEN, 2020: Modeling Arctic Boundary Layer Cloud Streets at Grey-zone Resolutions, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 42-56.  doi: 10.1007/s00376-019-9105-y

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 1989
Manuscript revised: 10 July 1989
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Some Aspects of the Diurnal and Semidiurnal Tidal Wind Field in Meteor Zone

  • 1. Indian Institute of Tropical Meteorology, Pune 411005, India,Department of Physics, Andhra University, Waltair 530 003, India,Department of Physics, Andhra University, Waltair 530 003, India

Abstract: The diurnal and semidiurnal tidal wind field variations in the altitudes between 80 and 100 km of the earth’s atmosphere over a mid-latitude station are studied by means of the phases of the zonal and meridional wind measurements made at Atlanta (34oN, 84oW). The rotation of diurnal tidal wind vector is seen to be clockwise at lower heights (80-86 km), swinging between clockwise and unti-clockwise at intermediate heights (88-96 km) and anti-clockwise at higher-heights (96- 100 km). The senses of rotation of diurnal and semidiurnal tidal wind vectors are compared between the stations located in the same and opposite hemispheres. The results are consistent with the tidal theory in the case of Atlanta and Adelaide (35oS, 139oE) whereas in the case of other stations considered in the present study, they showed marked variations.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return