Advanced Search

Volume 4 Issue 3

Jul.  1987

Article Contents

ON THE LOW-FREQUENCY, PLANETARY-SCALE MOTION IN THE TROPICAL ATMOSPHERE AND OCEANS


doi: 10.1007/BF02663596

  • Scale analyses for long wave, zonal ultralong wave (with zonal scale of disturbance L1~104 km and meridional scale L2~103 km) and meridional ultralong wave (L1~103 km, L2~104 km) are carried out and a set of approximate equations suitable for the study of these waves in a dry tropical atmosphere is obtained. Under the condition of sheared basic current, frequency analyses for the equations are carried out. It is found that Rossby waves and gravity waves may be separated for n ≥ l where n is the meridional wave number, whereas for n = 0 and L1~1000 km, the mixed Rossby-gravity wave will appear. Hence it is confirmed that the above results of scale analyses are correct. The consistency be-tween frequency analysis and scale analysis is established.The effect of shear of basic current on the equatorial waves is to change their frequencies and phase velocities and hence their group velocities. It increases the velocity of westward travelling Rossby waves and inertia-gravity and mixed waves, but decelerates the eastward inertia-gravity waves and the Kelvin wave. The recently observed low-frequency equatorial ocean wave may be interpreted as an eastward Kelvin wave in a basic current with shear.
  • [1] Fu Congbin, Ye Duzheng, 1988: THE TROPICAL VERY LOW-FREQUENCY OSCILLATION ON INTERANNUAL SCALE, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 369-388.  doi: 10.1007/BF02656760
    [2] HE Jinhai, YU Jingjing, SHEN Xinyong, 2007: Impacts of SST and SST Anomalies on Low-Frequency Oscillation in the Tropical Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 377-382.  doi: 10.1007/s00376-007-0377-2
    [3] Li Guitong, Li Chongyin, 1998: Activities of Low-Frequency Waves in the Tropical Atmosphere and ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 193-203.  doi: 10.1007/s00376-998-0039-z
    [4] Zhang Ren, Yu Zhihao, 2000: Low-Frequency CISK-Rossby Wave and Stratospheric QBO in the Tropical Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 311-321.  doi: 10.1007/s00376-000-0012-y
    [5] Ni Yunqi, Zhang Qin, Lin Wuyin, 1991: Seasonal Characteristics and Interannual Variability of Monthly Scale Low-Frequency Oscillation in a Low-Order Global Spectral Model, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 307-316.  doi: 10.1007/BF02919613
    [6] Fu Zuntao, Liu Shikuo, Fu Caixia, 1998: Low-Frequency Waves Forced by Large-scale Topography in the Barotropic Model, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 312-320.  doi: 10.1007/s00376-998-0003-y
    [7] FENG Junqiao, HU Dunxin, YU Lejiang, 2012: Low-Frequency Coupled Atmosphere--Ocean Variability in the Southern Indian Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 544-560.  doi: 10.1007/s00376-011-1096-2
    [8] Yan Jinghua, Chen Longxun, Wang Gu, 1988: THE PROPAGATION CHARACTERISTICS OF INTERANNUAL LOW-FREQUENCY OSCILLATIONS IN THE TROPICAL AIR-SEA SYSTEM, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 405-420.  doi: 10.1007/BF02656787
    [9] Li Guoqing, Robin Kung, Richard L. Pfeffer, 1993: Some Effects of Rotation Rate on Planetary-Scale Wave Flows, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 296-306.  doi: 10.1007/BF02658135
    [10] LI Yuefeng, 2007: Conversion of Kinetic Energy from Synoptic Scale Disturbance to Low-Frequency Fluctuation over the Yangtze River Valley in the Summers of 1997 and 1999, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 591-598.  doi: 10.1007/s00376-007-0591-y
    [11] FuZuntao, Zhao Qiang, QiaoFangli, Liu Shikuo, 2000: Response of Atmospheric Low-frequency Wave to Oceanic Forcing in the Tropics, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 569-575.  doi: 10.1007/s00376-000-0020-y
    [12] Lu Peisheng, 1993: The Propagation of Disturbances Excited by Low-Frequency Oscillations in the Tropics, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 287-295.  doi: 10.1007/BF02658134
    [13] Lu Keli, Zhu Yongchun, 1994: Seasonal Variation of Stationary and Low-Frequency Rossby Wave Rays, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 427-435.  doi: 10.1007/BF02658163
    [14] LUO Dehai, LIU Jinting, LI Jianping, 2010: Interaction between Planetary-Scale Diffluent Flow and Synoptic-Scale Waves During the Life Cycle of Blocking, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 807-831.  doi: 10.1007/s00376-009-9074-7
    [15] Guanshun ZHANG, Jiangyu MAO, Wei HUA, Xiaofei WU, Ruizao SUN, Ziyu YAN, Yimin LIU, Guoxiong WU, 2023: Synergistic Effect of the Planetary-scale Disturbance, Typhoon and Meso-β-scale Convective Vortex on the Extremely Intense Rainstorm on 20 July 2021 in Zhengzhou, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 428-446.  doi: 10.1007/s00376-022-2189-9
    [16] Chen Longxun, Zhu Congwen, Wang Wen, Zhang Peiqun, 2001: Analysis of the Characteristics of 30-60 Day Low-Frequency Oscillation over Asia during 1998 SCSMEX, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 623-638.  doi: 10.1007/s00376-001-0050-0
    [17] Fang ZHOU, Hong-Li REN, 2017: Dynamical Feedback between Synoptic Eddy and Low-Frequency Flow as Simulated by BCC_CSM1.1(m), ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1316-1332.  doi: 10.1007/s00376-017-6318-9
    [18] Jiapeng MIAO, Tao WANG, Huijun WANG, Yongqi GAO, 2018: Influence of Low-frequency Solar Forcing on the East Asian Winter Monsoon Based on HadCM3 and Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1205-1215.  doi: 10.1007/s00376-018-7229-0
    [19] Luo Dehai, Li Jianping, 2001: Interaction between a Slowly Moving Planetary-Scale Dipole Envelope Rossby Soliton and a Wavenumber-Two Topography in a Forced Higher Order Nonlinear Schr dinger Equation, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 239-256.  doi: 10.1007/s00376-001-0017-1
    [20] Wan Jun, Yang Fanglin, 1990: The Phenomena of Bifurcation and Catastrophe of Large-Scale Horizontal Motion in the Atmosphere under the Effect of Rossby Parameter, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 409-422.  doi: 10.1007/BF03008871

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 1987
Manuscript revised: 10 July 1987
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

ON THE LOW-FREQUENCY, PLANETARY-SCALE MOTION IN THE TROPICAL ATMOSPHERE AND OCEANS

  • 1. Institute of Atmospheric Physics, Academia Sinica, Beijing

Abstract: Scale analyses for long wave, zonal ultralong wave (with zonal scale of disturbance L1~104 km and meridional scale L2~103 km) and meridional ultralong wave (L1~103 km, L2~104 km) are carried out and a set of approximate equations suitable for the study of these waves in a dry tropical atmosphere is obtained. Under the condition of sheared basic current, frequency analyses for the equations are carried out. It is found that Rossby waves and gravity waves may be separated for n ≥ l where n is the meridional wave number, whereas for n = 0 and L1~1000 km, the mixed Rossby-gravity wave will appear. Hence it is confirmed that the above results of scale analyses are correct. The consistency be-tween frequency analysis and scale analysis is established.The effect of shear of basic current on the equatorial waves is to change their frequencies and phase velocities and hence their group velocities. It increases the velocity of westward travelling Rossby waves and inertia-gravity and mixed waves, but decelerates the eastward inertia-gravity waves and the Kelvin wave. The recently observed low-frequency equatorial ocean wave may be interpreted as an eastward Kelvin wave in a basic current with shear.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return