Advanced Search

Volume 4 Issue 3

Jul.  1987

Article Contents

MEASUREMENTS OF THE DRY DEPOSITION VELOCITY FOR SUSPENDED PARTICLES OVER THE SUBURBS OF BEIJING


doi: 10.1007/BF02663602

  • On the basis of the data of concentrations as well as wind and temperature, simultaneously observed in the north suburb of Beijing, measurements have been made of the dry deposition velocities of suspended particles. Results show that, over such an environment, the dry deposition velocities for suspended par-ticles vary from 0.15 to 10.62 cm s-1, which are comparable with those over forests, that the average surface resistance in the transfer process of particles is about four times as large as the aerodynamic resis-tance, and that the dry deposition velocity is well related to the frictional velocity in terms of positive cor-relation function.
  • [1] Lei Xiaoen, Julius S. Chang, 1992: Numerical Study on Dry Deposition Processes in Canopy Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 491-500.  doi: 10.1007/BF02677082
    [2] SHAO Longyi, LI Weijun, XIAO Zhenghui, SUN Zhenquan, 2008: The Mineralogy and Possible Sources of Spring Dust Particles over Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 395-403.  doi: 10.1007/s00376-008-0395-8
    [3] Sandeep D. WAGH, Baban NAGARE, Sanjay D. MORE, P. Pradeep KUMAR, 2017: Multiyear Observations of Deposition-Mode Ice Nucleating Particles at Two High-Altitude Stations in India, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1437-1446.  doi: 10.1007/s00376-017-7048-8
    [4] WANG Gengchen, BAI Jianhui, KONG Qinxin, Alexander EMILENKO, 2005: Black Carbon Particles in the Urban Atmosphere in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 640-646.  doi: 10.1007/BF02918707
    [5] FAN Xuehua, CHEN Hongbin, LIN Longfu, HAN Zhigang, Philippe GOLOUB, 2009: Retrieval of Aerosol Optical Properties over the Beijing Area Using POLDER/PARASOL Satellite Polarization Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1099-1107.  doi: 10.1007/s00376-009-8103-x
    [6] Fu Baopu, 1987: VARIATION IN WIND VELOCITY OVER WATER, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 93-104.  doi: 10.1007/BF02656665
    [7] Chuanfeng ZHAO, Yanan LI, Fang ZHANG, Yele SUN, Pucai WANG, 2018: Growth Rates of Fine Aerosol Particles at a Site near Beijing in June 2013, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 209-217.  doi: 10.1007/s00376-017-7069-3
    [8] YU Jianhua, Benjamin GUINOT, YU Tong, WANG Xin, LIU Wenqing, 2005: Seasonal Variations of Number Size Distributions and Mass Concentrations of Atmospheric Particles in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 401-407.  doi: 10.1007/BF02918753
    [9] YU Jianhua, CHEN Tian, Benjamin GUINOT, Helene CACHIER, YU Tong, LIU Wenqing, WANG Xin, 2006: Characteristics of Carbonaceous Particles in Beijing During Winter and Summer 2003, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 468-473.  doi: 10.1007/s00376-006-0468-5
    [10] Yufang TIAN, Daren LÜ, 2017: Comparison of Beijing MST Radar and Radiosonde Horizontal Wind Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 39-53.  doi: 10.1007/s00376-016-6129-4
    [11] Jeong-Eun LEE, Sung-Hwa JUNG, Hong-Mok PARK, Soohyun KWON, Pay-Liam LIN, GyuWon LEE, 2015: Classification of Precipitation Types Using Fall Velocity-Diameter Relationships from 2D-Video Distrometer Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1277-1290.  doi: 10.1007/s00376-015-4234-4
    [12] ZHANG Renjian, HAN Zhiwei, SHEN Zhenxing, CAO Junji, 2008: Continuous Measurement of Number Concentrations and Elemental Composition of Aerosol Particles for a Dust Storm Event in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 89-95.  doi: 10.1007/s00376-008-0089-2
    [13] WANG Qiwei, TAN Zhemin, 2009: Idealized Numerical Simulation Study of the Potential Vorticity Banners over a Mesoscale Mountain: Dry Adiabatic Process, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 906-922.  doi: 10.1007/s00376-009-8004-z
    [14] MA Shuangmei, ZHOU Tianjun, 2015: Precipitation Changes in Wet and Dry Seasons over the 20th Century Simulated by Two Versions of the FGOALS Model, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 839-854.  doi: 10.1007/s00376-014-4136-x
    [15] Qin SU, Buwen DONG, Fangxing TIAN, Nicholas P. KLINGAMAN, 2024: Anthropogenic Influence on Decadal Changes in Concurrent Hot and Dry Events over China around the Mid-1990s, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 233-246.  doi: 10.1007/s00376-023-2319-z
    [16] BIAN Jianchun, CHEN Hongbin, 2008: Statistics of the Tropopause Inversion Layer over Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 381-386.  doi: 10.1007/s00376-008-0381-1
    [17] K. Hussain, Ruby Riffat, A. Shaukat, M. Ashraf Siddiqui, 1990: A Study of Suspended Participate Matter in Lahore (Pakistan), ADVANCES IN ATMOSPHERIC SCIENCES, 7, 178-185.  doi: 10.1007/BF02919155
    [18] Jie CAO, Qin XU, Haishan CHEN, Shuping MA, 2022: Hybrid Methods for Computing the Streamfunction and Velocity Potential for Complex Flow Fields over Mesoscale Domains, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1417-1431.  doi: 10.1007/s00376-021-1280-y
    [19] ZHANG Zhanhai, ZHOU Mingyu, Sharon ZHONG, Donald H. LENSCHOW, Qing WANG, 2009: Parameterizations of the Daytime Friction Velocity, Temperature Scale, and Upslope Flow over Gently Inclined Terrain in Calm Synoptic Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 577-584.  doi: 10.1007/s00376-009-0577-z
    [20] K. Hussain, A. Shaukat, 1989: A Study of Supersaturation Spectra of Deposition Ice Nuclei, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 247-253.  doi: 10.1007/BF02658020

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 1987
Manuscript revised: 10 July 1987
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

MEASUREMENTS OF THE DRY DEPOSITION VELOCITY FOR SUSPENDED PARTICLES OVER THE SUBURBS OF BEIJING

  • 1. Institute of Atmospheric Physics, Academia Sinica, Beijing

Abstract: On the basis of the data of concentrations as well as wind and temperature, simultaneously observed in the north suburb of Beijing, measurements have been made of the dry deposition velocities of suspended particles. Results show that, over such an environment, the dry deposition velocities for suspended par-ticles vary from 0.15 to 10.62 cm s-1, which are comparable with those over forests, that the average surface resistance in the transfer process of particles is about four times as large as the aerodynamic resis-tance, and that the dry deposition velocity is well related to the frictional velocity in terms of positive cor-relation function.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return