Advanced Search

Volume 4 Issue 3

Jul.  1987

Article Contents

ON SOME ASPECTS OF OBJECTIVE ANALYSIS OF HUMI-DITY OVER INDIAN REGION BY THE OPTIMUM INTERPOLATION METHOD


doi: 10.1007/BF02663603

  • On the basis of a three year record of Radiosonde observations over Indian region, the autocorrelation function and structure function of the humidity mixing ratio (r) were computed for 850 hPa level. These are necessary for the construction of a suitable objective analysis scheme for humidity over Indian region using optimum interpolation method. The statistics were derived for the monsoon period (June through September) for 850 hPa level.In order to model the humidity correlation for Indian region, two types of curves were fitted: (i) μ(ρ) = a exp (-bρ), (ii) μ(ρ) = A exp (-Bρ2) where μ is the autocorrelation function - a function of distance ρ-between two observing stations. It was found that the best description of humidity correla-tion function was given by Eq. (1). The value of ‘a’ gives a quantitative impression of the observation error. Further, the mean random errors were computed from structure functions, the weighting factors for the observing stations with respect to each grid point were calculated, and objective analyses were made for the humidity mixing ratio.
  • [1] S. K. Sinha, S. G. Narkhedkar, D. R. Talwalkar, S. Rajamani, 1992: Some Experiments with Multivariate Objective Analysis Scheme of Heights and Winds Using Optimum Interpolation, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 431-440.  doi: 10.1007/BF02677075
    [2] S.K. Sinha, D.R. Talwalkar, S.G. Narkhedkar, S. Rajamani, 1989: A Scheme for Objective Analysis of Wind Field Incorporating Multi-Weighting Functions in the Optimum Interpolation Method, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 435-446.  doi: 10.1007/BF03342547
    [3] S. K. Sinha, D, R. Talwalkar, S. G. Narkhedkar, P. L. Kulkarni, S. Nair, S. Rajamani, 1990: Use of Surface Observations to Estimate Upper Air Humidity for the Objective Analysis of Relative Humidity over Indian Region, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 491-501.  doi: 10.1007/BF03342567
    [4] M. Y. Totagi, D. R. Talwalkar, S. Rajamani, S. S. Singh, 1992: Analysis-Prediction Experiments over Indian Region Using Primitive Equation Barotropic Model, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 477-482.  doi: 10.1007/BF02677080
    [5] WANG Hesong, JIA Gensuo, 2013: Regional Estimates of Evapotranspiration over Northern China Using a Remote-sensing-based Triangle Interpolation Method, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1479-1490.  doi: 10.1007/s00376-013-2294-x
    [6] P.C.S. Devara, G. Chandrasekhar, M.I. Ahmed, 1989: Some Aspects of the Diurnal and Semidiurnal Tidal Wind Field in Meteor Zone, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 357-364.  doi: 10.1007/BF02661541
    [7] Yuli ZHANG, Chuanxi LIU, Yi LIU, Rui YANG, 2019: Intraseasonal Oscillation of Tropospheric Ozone over the Indian Summer Monsoon Region, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 417-430.  doi: 10.1007/s00376-018-8113-7
    [8] Mengru FENG, Yujing QIN, Chuhan LU, 2021: An Objective Identification Method for Wintertime Cold Fronts in Eurasia, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1695-1705.  doi: 10.1007/s00376-021-0315-8
    [9] S.K. Sinha, S. Rajamani, 1995: Multivariate Objective Analysis of Wind and Height Fields in the Tropics, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 233-244.  doi: 10.1007/BF02656836
    [10] A. Mary Selvam, R. Vijayakumar, A. S. R. Murty, 1991: Some Physical Aspects of Summer Monsoon Clouds-Comparison of Cloud Model Results with Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 111-124.  doi: 10.1007/BF02657370
    [11] N. R. Parija, S. K. Dash, 1995: Some Aspects of the Characteristics of Monsoon Disturbances Using a Combined Barotropic-Baroclinic Model, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 487-506.  doi: 10.1007/BF02657007
    [12] A. Bandyopadhyay, S.S. Singh, 1994: Evaluation of Forecast Performance of an Economical Explicit Time Integration Scheme in a Limited Area Model over Indian Region, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 101-110.  doi: 10.1007/BF02656999
    [13] ZHAO Jun, SONG Junqiang, LI Zhenjun, 2003: Distributed Parallelization of a Global Atmospheric Data Objective Analysis System, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 159-163.  doi: 10.1007/BF03342060
    [14] Qian Yongfu, 1988: THE LOCAL SPLINE VERTICAL INTERPOLATION METHOD OF TEMPERATURE AND GEOPOTENTIAL HEIGHT FIELDS AND THE TIME-DEPENDENT DIFFERENCE FORM OF THE HYDROSTATIC EQUATION, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 159-170.  doi: 10.1007/BF02656778
    [15] Xuechun LUO, Xiao TANG, Haoyue WANG, Lei KONG, Huangjian WU, Weiguo WANG, Yating SONG, Hongyan LUO, Yao WANG, Jiang ZHU, Zifa WANG, 2023: Investigating the Changes in Air Pollutant Emissions over the Beijing-Tianjin-Hebei Region in February from 2014 to 2019 through an Inverse Emission Method, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 601-618.  doi: 10.1007/s00376-022-2039-9
    [16] Yong LI, Siming LI, Yao SHENG, Luheng WANG, 2018: Data Assimilation Method Based on the Constraints of Confidence Region, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 334-345.  doi: 10.1007/s00376-017-7045-y
    [17] Duan Tingyang, Elmar R. Reiter, 1990: Some Characteristics of Cumulus Convection over the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 87-97.  doi: 10.1007/BF02919171
    [18] K. D. Prasad, S. V. Singh, 1988: LARGE-SCALE FEATURES OF THE INDIAN SUMMER MON-SOON RAINFALL AND THEIR ASSOCIATION WITH SOME OCEANIC AND ATMOSPHERIC VARIABLES, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 499-513.  doi: 10.1007/BF02656794
    [19] P. N. Mahajan, D. R. Talwalkar, S. Nair, S. Rajamani, 1992: Construction of Vertical Wind Profile from Satellite-Derived Winds for Objective Analysis of Wind Field, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 237-246.  doi: 10.1007/BF02657514
    [20] Zhang Minghua, Yu Rucong, Yu Yongqiang, 2001: Comparing Cloud Radiative Properties between the Eastern China and the Indian Monsoon Region, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1090-1102.  doi: 10.1007/s00376-001-0025-1

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 1987
Manuscript revised: 10 July 1987
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

ON SOME ASPECTS OF OBJECTIVE ANALYSIS OF HUMI-DITY OVER INDIAN REGION BY THE OPTIMUM INTERPOLATION METHOD

  • 1. Indian Institute of Tropical Meteorology, Pune-411005, India,Indian Institute of Tropical Meteorology, Pune-411005, India,Indian Institute of Tropical Meteorology, Pune-411005, India

Abstract: On the basis of a three year record of Radiosonde observations over Indian region, the autocorrelation function and structure function of the humidity mixing ratio (r) were computed for 850 hPa level. These are necessary for the construction of a suitable objective analysis scheme for humidity over Indian region using optimum interpolation method. The statistics were derived for the monsoon period (June through September) for 850 hPa level.In order to model the humidity correlation for Indian region, two types of curves were fitted: (i) μ(ρ) = a exp (-bρ), (ii) μ(ρ) = A exp (-Bρ2) where μ is the autocorrelation function - a function of distance ρ-between two observing stations. It was found that the best description of humidity correla-tion function was given by Eq. (1). The value of ‘a’ gives a quantitative impression of the observation error. Further, the mean random errors were computed from structure functions, the weighting factors for the observing stations with respect to each grid point were calculated, and objective analyses were made for the humidity mixing ratio.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return