Advanced Search

Volume 4 Issue 3

Jul.  1987

Article Contents

THE OPERATIONAL SEASONAL FORECASTING OF THE SUMMER RAINFALL IN CHINA


doi: 10.1007/BF02663605

  • The paper presents a review of the success and failure of the practical results from summer drought and flood forecasts and seasonal precipitation forecasts in the period from 1976 to 1985. An analysis is made on the anomaly of the general circulation winch gives rise to summer precipitation and drought-flood occurrences in the country. It is proposed that the subtropical high over the West Pacific, the South Asia high and middle-latitude westerlies are the major synoptical regimes producing summer weather in China. The analysis focuses on the features of low-frequency oscillation and abnormality of the West Pacific sub-tropical high in the monthly 500 hPa mean charts, and on their interactions with the sea temperature of the North Pacific and the Equatorial Pacific. The result shows that there exist quasi-cycles of 3-4 years, 11 years and 19 years or so in the subtropical high with the feature of strong persistence and seasonal changes. There is a rather good correlation between the behaviour of the subtropical high and changes in the cold current area in the East Pacific, and especially during the El Nino period, there is an ob-vious coupling with abnormal changes of the intensity of the subtropical high. Analysis is also made on the effect of the thermal condition of the Tibetan Plateau, the Northern Hemisphere westerly circulation and the astronomical factors on the West Pacific subtropical high, the South Asia high and precipitation in the rainy season in China.
  • [1] Congwen ZHU, Boqi LIU, Kang XU, Ning JIANG, Kai LIU, 2021: Diversity of the Coupling Wheels in the East Asian Summer Monsoon on the Interannual Time Scale: Challenge of Summer Rainfall Forecasting in China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 546-554.  doi: 10.1007/s00376-020-0199-z
    [2] Linye SONG, Wansuo DUAN, Yun LI, Jiangyu MAO, 2016: A Timescale Decomposed Threshold Regression Downscaling Approach to Forecasting South China Early Summer Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1071-7084.  doi: 10.1007/s00376-016-5251-7
    [3] Xu Youping, Xia Daqing, Qian Yueying, 1998: The Water-Bearing Numerical Model and Its Operational Forecasting Experiments Part II: The Operational Forecasting Experiments, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 321-336.  doi: 10.1007/s00376-998-0004-x
    [4] LIU Xiangwen, WU Tongwen, YANG Song, JIE Weihua, NIE Suping, LI Qiaoping, CHENG Yanjie, LIANG Xiaoyun, 2015: Performance of the Seasonal Forecasting of the Asian Summer Monsoon by BCC_CSM1.1(m), ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1156-1172.  doi: 10.1007/s00376-015-4194-8
    [5] Philip E. BETT, Adam A. SCAIFE, Chaofan LI, Chris HEWITT, Nicola GOLDING, Peiqun ZHANG, Nick DUNSTONE, Doug M. SMITH, Hazel E. THORNTON, Riyu LU, Hong-Li REN, 2018: Seasonal Forecasts of the Summer 2016 Yangtze River Basin Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 918-926.  doi: 10.1007/s00376-018-7210-y
    [6] Chaofan LI, Riyu LU, Nick DUNSTONE, Adam A. SCAIFE, Philip E. BETT, Fei ZHENG, 2021: The Seasonal Prediction of the Exceptional Yangtze River Rainfall in Summer 2020, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2055-2066.  doi: 10.1007/s00376-021-1092-0
    [7] Philip E. BETT, Gill M. MARTIN, Nick DUNSTONE, Adam A. SCAIFE, Hazel E. THORNTON, Chaofan LI, 2021: Seasonal Rainfall Forecasts for the Yangtze River Basin in the Extreme Summer of 2020, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2212-2220.  doi: 10.1007/s00376-021-1087-x
    [8] Xiuzhen LI, Wen ZHOU, Yongqin David CHEN, 2016: Detecting the Origins of Moisture over Southeast China: Seasonal Variation and Heavy Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 319-329.  doi: 10.1007/s00376-015-4197-5
    [9] Chen Longxun, Luo Shaohua, Shen Rugui, 1984: THE ASIAN SUMMER MONSOON AND ITS RELATIONS TO THE RAINFALL IN CHINA, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 263-285.  doi: 10.1007/BF02678139
    [10] Tang Maocang, Li Tianshi, Zhang Jian, Li Cunqiang, 1989: The Operational Forecasting of Total Precipitation in Flood Seasons (April to September) of 5 Years (1983-1987), ADVANCES IN ATMOSPHERIC SCIENCES, 6, 289-300.  doi: 10.1007/BF02661535
    [11] Xia Daqing, Xu Youping, 1998: The Water-Bearing Numerical Model and Its Operational Forecasting Experiments Part I: The Water-Bearing Numerical Model, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 221-232.  doi: 10.1007/s00376-998-0041-5
    [12] Chaofan LI, Riyu LU, Philip E. BETT, Adam A. SCAIFE, Nicola MARTIN, 2018: Skillful Seasonal Forecasts of Summer Surface Air Temperature in Western China by Global Seasonal Forecast System Version 5, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 955-964.  doi: 10.1007/s00376-018-7291-7
    [13] Guo Pinwen, Tian Hong, Liu Xuanfei, 2000: Tropical Convective Activities Related to Summer Rainfall Anomaly in China, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 121-128.  doi: 10.1007/s00376-000-0048-z
    [14] WU Bingyi, YANG Kun, ZHANG Renhe, 2009: Eurasian Snow Cover Variability and Its Association with Summer Rainfall in China, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 31-44.  doi: 10.1007/s00376-009-0031-2
    [15] R. H. Kripalani, S. V. Singh, 1993: Large Scale Aspects of India-China Summer Monsoon Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 71-84.  doi: 10.1007/BF02656955
    [16] CUI Xuefeng, HUANG Gang, CHEN Wen, 2008: Notes of Numerical Simulation of Summer Rainfall in China with a Regional Climate Model REMO, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 999-1008.  doi: 10.1007/s00376-008-0999-z
    [17] LIN Zhongda, LU Riyu, 2009: The ENSO's Effect on Eastern China Rainfall in the Following Early Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 333-342.  doi: 10.1007/s00376-009-0333-4
    [18] Kun-Hui YE, Chi-Yung TAM, Wen ZHOU, Soo-Jin SOHN, 2015: Seasonal Prediction of June Rainfall over South China: Model Assessment and Statistical Downscaling, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 680-689.  doi: 10.1007/s00376-014-4047-x
    [19] SHEN Xinyong, LIU Jia, Xiaofan LI, 2012: Torrential Rainfall Responses to Ice Microphysical Processes during Pre-Summer Heavy Rainfall over Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 493-500.  doi: 10.1007/s00376-011-1122-4
    [20] Ning JIANG, Congwen ZHU, 2021: Seasonal Forecast of South China Sea Summer Monsoon Onset Disturbed by Cold Tongue La Niña in the Past Decade, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 147-155.  doi: 10.1007/s00376-020-0090-y

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 1987
Manuscript revised: 10 July 1987
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

THE OPERATIONAL SEASONAL FORECASTING OF THE SUMMER RAINFALL IN CHINA

  • 1. State Meteorological Administration, Beijing,State Meteorological Administration, Beijing

Abstract: The paper presents a review of the success and failure of the practical results from summer drought and flood forecasts and seasonal precipitation forecasts in the period from 1976 to 1985. An analysis is made on the anomaly of the general circulation winch gives rise to summer precipitation and drought-flood occurrences in the country. It is proposed that the subtropical high over the West Pacific, the South Asia high and middle-latitude westerlies are the major synoptical regimes producing summer weather in China. The analysis focuses on the features of low-frequency oscillation and abnormality of the West Pacific sub-tropical high in the monthly 500 hPa mean charts, and on their interactions with the sea temperature of the North Pacific and the Equatorial Pacific. The result shows that there exist quasi-cycles of 3-4 years, 11 years and 19 years or so in the subtropical high with the feature of strong persistence and seasonal changes. There is a rather good correlation between the behaviour of the subtropical high and changes in the cold current area in the East Pacific, and especially during the El Nino period, there is an ob-vious coupling with abnormal changes of the intensity of the subtropical high. Analysis is also made on the effect of the thermal condition of the Tibetan Plateau, the Northern Hemisphere westerly circulation and the astronomical factors on the West Pacific subtropical high, the South Asia high and precipitation in the rainy season in China.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return