Advanced Search
Article Contents

Improving the Vorticity-Streamfunction Method to Solve Two-Dimensional Anelastic and Nonhydrostatic Model


doi: 10.1007/BF02666551

  • The potential temperature vorticity has been introduced to polish the (momentum) vorticity-streamfunction method for solving the two-dimensional and nonhydrostatic model with much accuracy but not many increments of computation. The three-step procedure introduced in the present paper can be used to solve both shallow and deep dynamic models.
  • [1] Pei HUANG, Chungang CHEN, Xingliang LI, Xueshun SHEN, Feng XIAO, 2022: An Adaptive Nonhydrostatic Atmospheric Dynamical Core Using a Multi-Moment Constrained Finite Volume Method, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 487-501.  doi: 10.1007/s00376-021-1185-9
    [2] ZHAO Bin, ZHONG Qing, 2010: The Development of a Nonhydrostatic Global Spectral Model, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 676-684.  doi: 10.1007/s00376-009-9080-9
    [3] SHEN Xueshun, Akimasa SUMI, 2005: A High Resolution Nonhydrostatic Tropical Atmospheric Model and Its Performance, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 30-38.  doi: 10.1007/BF02930867
    [4] Liu Yudi, Ji Zhongzhen, Wang Bin, 2002: Study on Computational Properties of Several Vertical Grids with a Nonhydrostatic Model in Comparison to Analytical Solutions, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 528-543.  doi: 10.1007/s00376-002-0084-y
    [5] Brian HOSKINS, 2015: Potential Vorticity and the PV Perspective, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 2-9.  doi: 10.1007/s00376-014-0007-8
    [6] Zhao Qiang, Liu Shikuo, 1999: Simplification of Potential Vorcticity and Mesoscale Quasi-balanced Dynamics Model, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 304-313.  doi: 10.1007/BF02973090
    [7] Zuohao CAO, Da-Lin ZHANG, 2004: Tracking Surface Cyclones with Moist Potential Vorticity, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 830-835.  doi: 10.1007/BF02916379
    [8] Chanh Q. KIEU, Da-Lin ZHANG, 2012: Is the Isentropic Surface Always Impermeable to the Potential Vorticity Substance?, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 29-35.  doi: 10.1007/s00376-011-0227-0
    [9] Haochen LI, Chen YU, Jiangjiang XIA, Yingchun WANG, Jiang ZHU, Pingwen ZHANG, 2019: A Model Output Machine Learning Method for Grid Temperature Forecasts in the Beijing Area, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1156-1170.  doi: 10.1007/s00376-019-9023-z
    [10] Yueliang CHEN, Changxiang YAN, Jiang ZHU, 2018: Assimilation of Sea Surface Temperature in a Global Hybrid Coordinate Ocean Model, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1291-1304.  doi: 10.1007/s00376-018-7284-6
    [11] Lan Hongdi, Jiang Maoji, 1985: RESEARCH ON THE PHOTO-TEMPERATURE MODEL FOR THE DEVELOPMENTAL RATE OF RICE, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 549-552.  doi: 10.1007/BF02678753
    [12] Zuohao CAO, Da-Lin ZHANG, 2005: Sensitivity of Cyclone Tracks to the Initial Moisture Distribution: A Moist Potential Vorticity Perspective, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 807-820.  doi: 10.1007/BF02918681
    [13] Olivia MARTIUS, Cornelia SCHWIERZ, Michael SPRENGER, 2008: Dynamical Tropopause Variability and Potential Vorticity Streamers in the Northern Hemisphere ---A Climatological Analysis, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 367-380.  doi: 10.1007/s00376-008-0367-z
    [14] REN Rongcai, Ming CAI, 2006: Polar Vortex Oscillation Viewed in an Isentropic Potential Vorticity Coordinate, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 884-900.  doi: 10.1007/s00376-006-0884-6
    [15] Zuohao Cao, G.W.K. Moore, 1998: A Diagnostic Study of Moist Potential Vorticity Generation in an Extratropical Cyclone, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 152-166.  doi: 10.1007/s00376-998-0036-2
    [16] YANG Yang, REN Rongcai, Ming CAI, RAO Jian, 2015: Attributing Analysis on the Model Bias in Surface Temperature in the Climate System Model FGOALS-s2 through a Process-Based Decomposition Method, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 457-469.  doi: 10.1007/s00376-014-4061-z
    [17] ZHANG Xiaohui, GAO Zhiqiu, WEI Dongping, 2012: The Sensitivity of Ground Surface Temperature Prediction to Soil Thermal Properties Using the Simple Biosphere Model (SiB2)}, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 623-634.  doi: 10.1007/s00376-011-1162-9
    [18] ZHANG Jie, Laurent LI, ZHOU Tianjun, and XIN Xiaoge, 2013: Variation of Surface Temperature during the Last Millennium in a Simulation with the FGOALS-gl Climate System Model, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 699-712.  doi: 10.1007/s00376-013-2178-0
    [19] Deniz BOZKURT, David H. BROMWICH, Jorge CARRASCO, Keith M. HINES, Juan Carlos MAUREIRA, Roberto RONDANELLI, 2020: Recent Near-surface Temperature Trends in the Antarctic Peninsula from Observed, Reanalysis and Regional Climate Model Data, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 477-493.  doi: 10.1007/s00376-020-9183-x
    [20] Jianfeng WANG, Ricardo M. FONSECA, Kendall RUTLEDGE, Javier MARTÍN-TORRES, Jun YU, 2020: A Hybrid Statistical-Dynamical Downscaling of Air Temperature over Scandinavia Using the WRF Model, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 57-74.  doi: 10.1007/s00376-019-9091-0

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 April 1994
Manuscript revised: 10 April 1994
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Improving the Vorticity-Streamfunction Method to Solve Two-Dimensional Anelastic and Nonhydrostatic Model

  • 1. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: The potential temperature vorticity has been introduced to polish the (momentum) vorticity-streamfunction method for solving the two-dimensional and nonhydrostatic model with much accuracy but not many increments of computation. The three-step procedure introduced in the present paper can be used to solve both shallow and deep dynamic models.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return