Advanced Search

Volume 4 Issue 2

Apr.  1987

Article Contents

THE SENSITIVITY OF THE NUMERICAL SIMULATION TO OROGRAPHY SPECIFICATION IN THE LOWRESOLUTION SPECTRAL MODEL-PART II: IMPACT OF THE SMOOTHED OROGRAPHY AND RIPPLES ON SIMULATIONS


doi: 10.1007/BF02677061

  • In order to investigate the impact of the smoothed orography and the spurious orographic ripples on simu-lations in the low-resolution spectral model, three different numerical tests, that is, the unsmoothed orography scheme, the smoothed orography scheme and non-ripples scheme are performed. In this paper, the model used by us is the same as Part I except for orographic specification.The results from simulations indicate that, as far as the climatic simulation is concerned, some aspects of the simulated stationary disturbances, zonal and meridional wind, temperature and precipitation in the low-resolu-tion spectral model with properly smoothed mountains are significantly improved, especially in winter hemis-phere.The deep ripples in the model with the unsmoothed orography produce spurious high pressure regions at the surface with subsidence, and suppress rainfall, causing an unrealistic splitting of the precipitation area in northern winter and summer. Removal of tbe deep ripples by using the special procedure for smoothing topog-raphy allows a strong upward motion in the ripple area with heavy rainfall, eliminating the unrelistic split in the precipitation area.
  • [1] Ni Yunqi, Bette L. Otto-Bliesner, David D. Houghton, 1987: THE SENSITIVITY OF NUMERICAL SIMULATION TO OROGRAPHY SPECIFICATION IN THE LOW RESOLUTION SPECTRAL MODEL-PART I: THE EFFECTS OF OROGRAPHY ON THE ATMOSPHERIC GENERAL CIRCULATION, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 1-12.  doi: 10.1007/BF02663607
    [2] XU Zhongfeng, QIAN Yongfu, FU Congbin, 2010: The Role of Land--sea Distribution and Orography in the Asian Monsoon. Part II: Orography, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 528-542.  doi: 10.1007/s00376-009-9045-z
    [3] Zeng Xinmin, Zhao Ming, Su Bingkai, 2000: A Numerical Study on Effects of Land-Surface Heterogeneity from ‘Combined Approach’ on Atmospheric Process Part II: Coupling-Model Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 241-255.  doi: 10.1007/s00376-000-0007-8
    [4] XU Zhongfeng, QIAN Yongfu, FU Congbin, 2010: The Role of Land--sea Distribution and Orography in the Asian Monsoon. Part I: Land--sea Distribution, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 403-420.  doi: 10.1007/s00376-009-9005-7
    [5] ZENG Hongling, JI Jinjun, WU Guoxiong, 2008: An Updated Coupled Model for Land-Atmosphere Interaction. Part II: Simulations of Biological Processes, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 632-640.  doi: 10.1007/s00376-008-0632-1
    [6] Xiao Qingnong, Wu Rongsheng, 1995: A Study on Frontal Motion over Orography, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 325-334.  doi: 10.1007/BF02656981
    [7] Xu Youping, Xia Daqing, Qian Yueying, 1998: The Water-Bearing Numerical Model and Its Operational Forecasting Experiments Part II: The Operational Forecasting Experiments, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 321-336.  doi: 10.1007/s00376-998-0004-x
    [8] LIU Xiaoli, NIU Shengjie, 2010: Numerical Simulation of Macro- and Micro-structures of Intense Convective Clouds with a Spectral Bin Microphysics Model, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1078-1088.  doi: 10.1007/s00376-010-8088-5
    [9] Kai Chi WONG, Senfeng LIU, Andrew G. TURNER, Reinhard K. SCHIEMANN, 2018: Different Asian Monsoon Rainfall Responses to Idealized Orography Sensitivity Experiments in the HadGEM3-GA6 and FGOALS-FAMIL Global Climate Models, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1049-1062.  doi: 10.1007/s00376-018-7269-5
    [10] Chen Jiong, Liu Shikuo, 1998: The Solitary Waves of the Barotropic Quasi-Geostrophic Model with the Large-scale Orography, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 404-411.  doi: 10.1007/s00376-998-0010-z
    [11] Suk-Jin CHOI, Dong-Kyou LEE, 2016: Impact of Spectral Nudging on the Downscaling of Tropical Cyclones in Regional Climate Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 730-742.  doi: 10.1007/s00376-016-5061-y
    [12] LI Weiping, SUN Shufen, WANG Biao, LIU Xin, 2009: Numerical Simulation of Sensitivities of Snow Melting to Spectral Composition of the Incoming Solar Radiation, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 403-412.  doi: 10.1007/s00376-009-0403-7
    [13] DING Yihui, SHI Xueli, LIU Yiming, LIU Yan, LI Qingquan, QIAN Yongfu, MIAO Manqian, ZHAI Guoqing, GAO Kun, 2006: Multi-year Simulations and Experimental Seasonal Predictions for Rainy Seasons in China by Using a Nested Regional Climate Model (RegCM NCC). Part I: Sensitivity Study, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 323-341.  doi: 10.1007/s00376-006-0487-2
    [14] Kong Fanyou, 1994: The Vertical Transport of Air Pollutants by Convective Clouds Part II: Transport of Soluble Gases and Sensitivity Tests, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 1-12.  doi: 10.1007/BF02656988
    [15] Sheng Hua, William Bourke, Terry Hart, 1992: An Impact of Hydrostatic Extraction Scheme on BMRC’s Global Spectral Model, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 269-278.  doi: 10.1007/BF02656937
    [16] Li Long, Zhu Baozhen, 1990: The Modified Envelope Orography and the Air Flow over and around Mountains, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 249-260.  doi: 10.1007/BF03179759
    [17] Cheng Anning, Chen Wen, Huang Ronghui, 1998: The Sensitivity of Numerical Simulation of the East Asian Monsoon to Different Cumulus Parameterization Schemes, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 204-220.  doi: 10.1007/s00376-998-0040-6
    [18] Chang LIU, Shaoqing ZHANG, Shan LI, Zhengyu LIU, 2017: Impact of the Time Scale of Model Sensitivity Response on Coupled Model Parameter Estimation, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1346-1357.  doi: 10.1007/s00376-017-6272-6
    [19] Lanqiang Bai, Dan Yao, Zhiyong Meng, Yu Zhang, Xianxiang Huang, Zhaoming Li, 2023: Influence of Irregular Coastlines on a Tornadic Mesovortex in the Pearl River Delta during Monsoon Season. Part II: Numerical Experiments, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3096-4
    [20] CAO Jie, Qin XU, 2011: Computing Streamfunction and Velocity Potential in a Limited Domain of Arbitrary Shape. Part II: Numerical Methods and Test Experiments, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1445-1458.  doi: 10.1007/s00376-011-0186-5

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 April 1987
Manuscript revised: 10 April 1987
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

THE SENSITIVITY OF THE NUMERICAL SIMULATION TO OROGRAPHY SPECIFICATION IN THE LOWRESOLUTION SPECTRAL MODEL-PART II: IMPACT OF THE SMOOTHED OROGRAPHY AND RIPPLES ON SIMULATIONS

  • 1. Department of Atmospheric Sciences, Nanjing University, Nanjing,Department of Meteorology, University of Wisconsin, Madison, WI 53706, U.S.A.,Department of Meteorology, University of Wisconsin, Madison, WI 53706, U.S.A.

Abstract: In order to investigate the impact of the smoothed orography and the spurious orographic ripples on simu-lations in the low-resolution spectral model, three different numerical tests, that is, the unsmoothed orography scheme, the smoothed orography scheme and non-ripples scheme are performed. In this paper, the model used by us is the same as Part I except for orographic specification.The results from simulations indicate that, as far as the climatic simulation is concerned, some aspects of the simulated stationary disturbances, zonal and meridional wind, temperature and precipitation in the low-resolu-tion spectral model with properly smoothed mountains are significantly improved, especially in winter hemis-phere.The deep ripples in the model with the unsmoothed orography produce spurious high pressure regions at the surface with subsidence, and suppress rainfall, causing an unrealistic splitting of the precipitation area in northern winter and summer. Removal of tbe deep ripples by using the special procedure for smoothing topog-raphy allows a strong upward motion in the ripple area with heavy rainfall, eliminating the unrelistic split in the precipitation area.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return