Advanced Search

Volume 9 Issue 4

Oct.  1992

Article Contents

Some Experiments with Multivariate Objective Analysis Scheme of Heights and Winds Using Optimum Interpolation


doi: 10.1007/BF02677075

  • A two-dimensional, multitvariate objective analysis scheme for simultaneous analysis of geopotential height and wind fields has been developed over Indian and adjoining region for use in numerical weather prediction. The height-height correlations calculated using daily data of four July months (1976-1979), are used to derive the other autocorrelations and cross-correlations assuming geostropic relationship. A Gaussian function is used to model the autocorrelation function. Since the scheme is multivariate the regression coefficients (weights) are matrix.Near the equator, the geostrophic approximation relating mass and wind is decoupled in a way similar to Bergman (1979). The objective analyses were made over Indian and adjoining region for 850, 700, 500, 300 and 200 hPa levels for the period from 4 July to 8 July 1979, 12 GMT. The analyses obtained using multivariate optimum in-terpolation scheme depict the synoptic situations satisfactorily. The analyses were also compared with the FGGE ana-lyses (from ECMWF) and also with the station observations by computing the root mean square (RMS) errors and the RMS errors are comparable with those obtained in other similar studies.
  • [1] S. K. Sinha, D. R. Talwalkar, S. Rajamani, 1987: ON SOME ASPECTS OF OBJECTIVE ANALYSIS OF HUMI-DITY OVER INDIAN REGION BY THE OPTIMUM INTERPOLATION METHOD, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 332-342.  doi: 10.1007/BF02663603
    [2] S.K. Sinha, D.R. Talwalkar, S.G. Narkhedkar, S. Rajamani, 1989: A Scheme for Objective Analysis of Wind Field Incorporating Multi-Weighting Functions in the Optimum Interpolation Method, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 435-446.  doi: 10.1007/BF03342547
    [3] S.K. Sinha, S. Rajamani, 1995: Multivariate Objective Analysis of Wind and Height Fields in the Tropics, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 233-244.  doi: 10.1007/BF02656836
    [4] P. N. Mahajan, D. R. Talwalkar, S. Nair, S. Rajamani, 1992: Construction of Vertical Wind Profile from Satellite-Derived Winds for Objective Analysis of Wind Field, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 237-246.  doi: 10.1007/BF02657514
    [5] M. Y. Totagi, D. R. Talwalkar, S. Rajamani, S. S. Singh, 1992: Analysis-Prediction Experiments over Indian Region Using Primitive Equation Barotropic Model, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 477-482.  doi: 10.1007/BF02677080
    [6] S. N. Bavadekar, R. M. Khaladkar, 1994: Estimation of Winds at Different Isobaric Levels Based on the Observed Winds at 850 hPa Level Using Double Fourier Series, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 327-334.  doi: 10.1007/BF02658152
    [7] XU Dongmei, Thomas AULIGNÈ, Xiang-Yu HUANG, 2015: A Validation of the Multivariate and Minimum Residual Method for Cloud Retrieval Using Radiance from Multiple Satellites, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 349-362.  doi: 10.1007/s00376-014-3258-5
    [8] ZHAO Jun, SONG Junqiang, LI Zhenjun, 2003: Distributed Parallelization of a Global Atmospheric Data Objective Analysis System, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 159-163.  doi: 10.1007/BF03342060
    [9] Joon Jin SONG, Soohyun KWON, GyuWon LEE, 2015: Incorporation of Parameter Uncertainty into Spatial Interpolation Using Bayesian Trans-Gaussian Kriging, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 413-423.  doi: 10.1007/s00376-014-4040-4
    [10] WANG Hesong, JIA Gensuo, 2013: Regional Estimates of Evapotranspiration over Northern China Using a Remote-sensing-based Triangle Interpolation Method, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1479-1490.  doi: 10.1007/s00376-013-2294-x
    [11] S. K. Sinha, D, R. Talwalkar, S. G. Narkhedkar, P. L. Kulkarni, S. Nair, S. Rajamani, 1990: Use of Surface Observations to Estimate Upper Air Humidity for the Objective Analysis of Relative Humidity over Indian Region, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 491-501.  doi: 10.1007/BF03342567
    [12] N. R. Parija, S. K. Dash, 1995: Some Aspects of the Characteristics of Monsoon Disturbances Using a Combined Barotropic-Baroclinic Model, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 487-506.  doi: 10.1007/BF02657007
    [13] Yang LU, Xiaochun WANG, Jihai DONG, 2021: Melt Pond Scheme Parameter Estimation Using an Adjoint Model, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1525-1536.  doi: 10.1007/s00376-021-0305-x
    [14] YAO Zhigang, LIN Longfu, CHEN Hongbin, FEI Jianfang, 2008: A Scheme for Estimating Tropical Cyclone Intensity Using AMSU-A Data, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 96-106.  doi: 10.1007/s00376-008-0096-3
    [15] Ning ZHANG, Yunsong DU, Shiguang MIAO, Xiaoyi FANG, 2016: Evaluation of a Micro-scale Wind Model's Performance over Realistic Building Clusters Using Wind Tunnel Experiments, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 969-978.  doi: 10.1007/s00376-016-5273-1
    [16] Chuan GAO, Rong-Hua ZHANG, Xinrong WU, Jichang SUN, 2018: Idealized Experiments for Optimizing Model Parameters Using a 4D-Variational Method in an Intermediate Coupled Model of ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 410-422.  doi: 10.1007/s00376-017-7109-z
    [17] Wu Beiying, John Gille, 1999: Retrieval of Tropospheric CO Profiles Using Correlation Radiometer: I. Retrieval Experiments for a Clear Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 343-354.  doi: 10.1007/s00376-999-0013-4
    [18] HUANG Bo, CHEN Dehui, LI Xingliang, LI Chao, , 2014: Improvement of the Semi-Lagrangian Advection Scheme in the GRAPES Model: Theoretical Analysis and Idealized Tests, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 693-704.  doi: 10.1007/s00376-013-3086-z
    [19] Feifei SHEN, Aiqing SHU, Zhiquan LIU, Hong LI, Lipeng JIANG, Tao ZHANG, Dongmei XU, 2024: Assimilating FY-4A AGRI Radiances with a Channel-Sensitive Cloud Detection Scheme for the Analysis and Forecasting of Multiple Typhoons, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 937-958.  doi: 10.1007/s00376-023-3072-z
    [20] SHOU Yixuan, LI Shenshen, SHOU Shaowen, ZHAO Zhongming, 2006: Application of a Cloud-Texture Analysis Scheme to the Cloud Cluster Structure Recognition and Rainfall Estimation in a Mesoscale Rainstorm Process, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 767-774.  doi: 10.1007/s00376-006-0767-x

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 October 1992
Manuscript revised: 10 October 1992
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Some Experiments with Multivariate Objective Analysis Scheme of Heights and Winds Using Optimum Interpolation

  • 1. Indian Institute of Tropical Meteorology, Pune 411008, India,Indian Institute of Tropical Meteorology, Pune 411008, India,Indian Institute of Tropical Meteorology, Pune 411008, India,Indian Institute of Tropical Meteorology, Pune 411008, India

Abstract: A two-dimensional, multitvariate objective analysis scheme for simultaneous analysis of geopotential height and wind fields has been developed over Indian and adjoining region for use in numerical weather prediction. The height-height correlations calculated using daily data of four July months (1976-1979), are used to derive the other autocorrelations and cross-correlations assuming geostropic relationship. A Gaussian function is used to model the autocorrelation function. Since the scheme is multivariate the regression coefficients (weights) are matrix.Near the equator, the geostrophic approximation relating mass and wind is decoupled in a way similar to Bergman (1979). The objective analyses were made over Indian and adjoining region for 850, 700, 500, 300 and 200 hPa levels for the period from 4 July to 8 July 1979, 12 GMT. The analyses obtained using multivariate optimum in-terpolation scheme depict the synoptic situations satisfactorily. The analyses were also compared with the FGGE ana-lyses (from ECMWF) and also with the station observations by computing the root mean square (RMS) errors and the RMS errors are comparable with those obtained in other similar studies.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return