Advanced Search

Volume 2 Issue 3

Jul.  1985

Article Contents

THE HEATING FIELD IN AN ASYMMETRIC HURRICANE -PART I:SCALE ANALYSIS


doi: 10.1007/BF02677256

  • A closed system of equations describing an asymmetric disturbance in cylindrical geometry is expanded about a small parameter. The small parameter describes the ratio of the magnitude of divergence in the boundary layer to that above that layer. A low order system describes a gradient wind balance in the radial direction and is quasi-symmetric with respect to the pressure and temperature fields. This system can be solved as an inverse problem for a mature steady state hurricane. The procedure entails asking the questions what structure and heating distributions are required to maintain a given asymmetric distribution of the tangential velocity (i. e. the angular momentum) in steady state. The method of characteristics enables us to solve for the vertical motion. That in turn determines the radial motion from the mass continuity equation. Application of the hydrostatics to the cylindrical thermal wind equation determines the pressure and the thermal fields and finally the required heating fields are deduced from the first law. This entire system of inverse dynamics is linear although no nonlinear terms are dropped from the original direct set of equations. The real data applications of this procedure will be described in part II (to be published in the next issue).
  • [1] T.N.Krishnamurti, Sheng Jian, 1985: THE HEATING FIELD IN AN ASYMMETRIC HURRICANE PART II:RESULTS OF COMPUTATIONS, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 426-445.  doi: 10.1007/BF02678742
    [2] XU Wenhui, NI Yunqi, WANG Xiaokang, QIU Xuexing, BAO Xinghua, JIN Wenyan, 2011: A Study of Structure and Mechanism of a Meso-beta-scale Convective Vortex and Associated Heavy Rainfall in the Dabie Mountain Area Part I: Diagnostic Analysis of the Structure, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1159-1176.  doi: 10.1007/s00376-010-0170-5
    [3] Chao Jiping, Ji Zhengang, 1985: ON THE INFLUENCES OF LARGE-SCALE INHOMOGENEITY OF SEA TEMPERATURE UPON THE OCEANIC WAVES IN THE TROPICAL REGIONS——PART I : LINEAR THEORETICAL ANALYSIS, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 295-306.  doi: 10.1007/BF02677245
    [4] Y. L. McHall, 1993: Large Scale Perturbations in Extratropical Atmosphere-Part I: On Rossby Waves, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 169-180.  doi: 10.1007/BF02919139
    [5] Hengyi WENG, 2012: Impacts of Multi-Scale Solar Activity on Climate. Part I: Atmospheric Circulation Patterns and Climate Extremes, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 867-886.  doi: 10.1007/s00376-012-1238-1
    [6] Zeng Qingcun, Lu Peisheng, Li Rongfeng, Yuan Chongguang, 1986: EVOLUTION OF LARGE SCALE DISTURBANCES AND THEIR INTERACTION WITH MEAN FLOW IN A ROTATING BAROTROPIC ATMOSPHERE —PART I, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 39-58.  doi: 10.1007/BF02682551
    [7] Yang Guoxiang, Lu Hancheng, He Qiqiang, 1987: A MESO-α SCALE STUDY OF MEIYU FRONT HEAVY RAIN-PART I: OBSERVATIONAL STUDIES, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 264-277.  doi: 10.1007/BF02915593
    [8] LIAN Yi, SHEN Baizhu, LI Shangfeng, ZHAO Bin, GAO Zongting, LIU Gang, LIU Ping, CAO Ling, 2013: Impacts of Polar Vortex, NPO, and SST Configurations on Unusually Cool Summers in Northeast China. Part I: Analysis and Diagnosis, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 193-209.  doi: 10.1007/s00376-012-1258-x
    [9] Xinghai ZHANG, Yihong DUAN, Yuqing WANG, Na WEI, Hao HU, 2017: A High-resolution Simulation of Supertyphoon Rammasun (2014) —— Part I: Model Verification and Surface Energetics Analysis, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 757-770.  doi: 10.1007/s00376-017-6255-7
    [10] Yang Guoxiang, Lu Hancheng, He Qiqiang, 1987: A MESO-α-SCALE STUDY OF MEIYU FRONT HEAVY RAIN-PART II: THE DYNAMICAL ANALYSIS OF RAIN-BAND DISTURBANCE, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 485-495.  doi: 10.1007/BF02656747
    [11] LIU Huizhi, LIANG Bin, ZHU Fengrong, ZHANG Boyin, SANG Jianguo, 2004: Water-Tank Experiment on the Thermal Circulation Induced by the Bottom Heating in an Asymmetric Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 536-546.  doi: 10.1007/BF02915721
    [12] KUANG Xueyuan, ZHANG Yaocun, 2005: Seasonal Variation of the East Asian Subtropical Westerly Jet and Its Association with the Heating Field over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 831-840.  doi: 10.1007/BF02918683
    [13] MA Yaoming, WANG Binbin, ZHONG Lei, MA Weiqiang, 2012: The Regional Surface Heating Field over the Heterogeneous Landscape of the Tibetan Plateau Using MODIS and In-Situ Data, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 47-53.  doi: 10.1007/s00376-011-1008-5
    [14] Melinda S. PENG, Jiayi PENG, Tim LI, Eric HENDRICKS, 2014: Effect of Baroclinicity on Vortex Axisymmetrization. Part I: Barotropic Basic Vortex, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1256-1266.  doi: 10.1007/s00376-014-3237-x
    [15] Yong. L. McHall, 1991: Planetary Stationary Waves in the Atmosphere Part I: Orographic Stationary Waves, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 211-224.  doi: 10.1007/BF02658095
    [16] Y. L. McHall, 1992: Wintertime Stratospheric Anomalies-Part I: Warm Pools, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 299-310.  doi: 10.1007/BF02656940
    [17] Yong L. McHall, 1993: Group Velocity of Anisotropic Waves-Part I: Mathematical Expression, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 393-406.  doi: 10.1007/BF02656964
    [18] Yufan DAI, Qingqing LI, Xinhang LIU, Lijuan WANG, 2023: A Lagrangian Trajectory Analysis of Azimuthally Asymmetric Equivalent Potential Temperature in the Outer Core of Sheared Tropical Cyclones, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1689-1706.  doi: 10.1007/s00376-023-2245-0
    [19] Y. L. McHall, 1993: Large Scale Perturbations in Extratropical Atmosphere-Part II: On Geostrophic Waves, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 181-192.  doi: 10.1007/BF02919140
    [20] Zeng Xinmin, Zhao Ming, Su Bingkai, 2000: A Numerical Study on Effects of Land-Surface Heterogeneity from “Combined Approach” on Atmospheric Process Part I: Principle and Method, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 103-120.  doi: 10.1007/s00376-000-0047-0

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 1985
Manuscript revised: 10 July 1985
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

THE HEATING FIELD IN AN ASYMMETRIC HURRICANE -PART I:SCALE ANALYSIS

  • 1. DepartmentofMeteorologyFloridaStateUniversityU.S.A,DepartmentofMeteorologyFloridaStateUniversityU.S.A

Abstract: A closed system of equations describing an asymmetric disturbance in cylindrical geometry is expanded about a small parameter. The small parameter describes the ratio of the magnitude of divergence in the boundary layer to that above that layer. A low order system describes a gradient wind balance in the radial direction and is quasi-symmetric with respect to the pressure and temperature fields. This system can be solved as an inverse problem for a mature steady state hurricane. The procedure entails asking the questions what structure and heating distributions are required to maintain a given asymmetric distribution of the tangential velocity (i. e. the angular momentum) in steady state. The method of characteristics enables us to solve for the vertical motion. That in turn determines the radial motion from the mass continuity equation. Application of the hydrostatics to the cylindrical thermal wind equation determines the pressure and the thermal fields and finally the required heating fields are deduced from the first law. This entire system of inverse dynamics is linear although no nonlinear terms are dropped from the original direct set of equations. The real data applications of this procedure will be described in part II (to be published in the next issue).

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return