Advanced Search

Volume 1 Issue 2

Jul.  1984

Article Contents

CHARACTERISTICS OF ATMOSPHERIC EXTINCTION-TO-BACKSCATTERING RATIO IN RUBY LIDAR MEASUREMENTS


doi: 10.1007/BF02678130

  • In this paper the dependence of the ratio k (the atmospheric extinction-to-backscattering ratio) upon the aerosol refractive index and size distribution is theoretically studied in ruby lidar measurements. An empirical expression for the ratio k is then established. Moreover the effect of molecular scattering on the ratio k is discussed.
  • [1] Zhao Yanzeng, Hu Yuliang, Zhao Hongjie, 1984: INTEGRATION METHOD AND RATIO METHOD FOR RETRIEVING EXTINCTION COEFFICIENT FROM LIDAR SIGNALS, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 53-75.  doi: 10.1007/BF03187616
    [2] P.C.S. Devara, P. Ernest Raj, 1992: Atmospheric NO2 Concentration Measurements Using Differential Absorption Lidar Technique, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 73-82.  doi: 10.1007/BF02656932
    [3] P.C.S. Devara, P. Ernest Raj, 1993: Lidar Measurements of Aerosols in the Tropical Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 365-378.  doi: 10.1007/BF02658142
    [4] Zhang Junhua, Mao Jietai, Wang Meihua, 2002: Analysis of the Aerosol Extinction Characteristics in Different Areas of China, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 136-152.  doi: 10.1007/s00376-002-0040-x
    [5] Yaping Zhou, Ken C. Rutledge, Thomas P. Charlock, Norman G. Loeb, Seiji Kato, 2001: Atmospheric Corrections Using MODTRAN for TOA and Surface BRDF Characteristics from High Resolution Spectroradiometric/Angular Measurements from a Helicopter Platform, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 984-1004.  doi: 10.1007/BF03403518
    [6] Qiu Jinhuan, Wang Hongqi, Zhou Xiuji, Lu Daren, 1985: EXPERIMENTAL STUDY OF REMOTE SENSING OF ATMOSPHERIC AEROSOL SIZE DISTRIBUTION BY COMBINED SOLAR EXTINCTION AND FORWARD SCATTERING METHOD, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 307-315.  doi: 10.1007/BF02677246
    [7] Jianjun LIU, Zhanqing LI, ZHENG Youfei, Maureen CRIBB, 2015: Cloud-Base Distribution and Cirrus Properties Based on Micropulse Lidar Measurements at a Site in Southeastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 991-1004.  doi: 10.1007/s00376-014-4176-2
    [8] Chen Wuhe, Situ Da, Zhong Xubin, 1998: Atmospheric Refractive Turbulence Effect on Diffraction-Limited Infrared Coherent Lidar, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 124-134.  doi: 10.1007/s00376-998-0024-6
    [9] Yang Shu, Zhou Xiuji, Zhao Yanzeng, 1986: A THEORETICAL STUDY OF MULTI-WAVELENGTH LIDAR EXPLORATION OF OPTICAL PROPERTIES OF ATMOSPHERIC AEROSOLS, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 23-38.  doi: 10.1007/BF02680043
    [10] Liu Jinli, 1986: CALCULATIONS OF ABSORPTION, ATTENUATION, AND BACKSCATTERING OF HAILSTONES AND THEIR POSSIBLE APPLICATIONS, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 454-465.  doi: 10.1007/BF02657935
    [11] Zhao Bolin, Han Qingyuan, Zhu Yuanjing, 1985: A STUDY ON ABSORPTION CHARACTERISTICS OF THE ATMOSPHERIC WINDOW IN MICROWAVE BAND, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 28-34.  doi: 10.1007/BF03179734
    [12] Ye Zhuojia, Roger A. Pielke, 1995: A Parameterization of Bowen Ratio with Respect to Soil Moisture Availability, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 449-474.  doi: 10.1007/BF02657005
    [13] Li Jun, Lu Daren, 1997: Nonlinear Retrieval of Atmospheric Ozone Profile from Solar Backscatter Ultraviolet Measurements: Theory and Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 473-480.  doi: 10.1007/s00376-997-0065-2
    [14] MA Yaoming, Massimo MENENTI, Reinder FEDDES, 2010: Parameterization of Heat Fluxes at Heterogeneous Surfaces by Integrating Satellite Measurements with Surface Layer and Atmospheric Boundary Layer Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 328-336.  doi: 10.1007/s00376-009-9024-4
    [15] Li Xin, Hu Fei, Liu Gang, Hong Zhongxiang, 2001: Multi-scale Fractal Characteristics of Atmospheric Boundary-Layer Turbulence, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 787-792.
    [16] LI Chongyin, PAN Jing, 2006: Atmospheric Circulation Characteristics Associated with the Onset of Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 925-939.  doi: 10.1007/s00376-006-0925-1
    [17] Qiu Jinhuan, Lu Daren, 1991: On Lidar Application for Remote Sensing of the Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 369-378.  doi: 10.1007/BF02919620
    [18] You YI, Zhaonan CAI, Yi LIU, Shuangxi FANG, Yuli ZHANG, Dongxu YANG, Yong WANG, Miao LIANG, Maohua WANG, 2020: Direct Observations of Atmospheric Transport and Stratosphere-Troposphere Exchange from High-Precision Carbon Dioxide and Carbon Monoxide Profile Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 608-616.  doi: 10.1007/s00376-020-9227-2
    [19] Bo HAN, Shihua LÜ, Ruiqing LI, Xin WANG, Lin ZHAO, Cailing ZHAO, Danyun WANG, Xianhong MENG, 2017: Global Land Surface Climate Analysis Based on the Calculation of a Modified Bowen Ratio, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 663-678.  doi: 10.1007/s00376-016-6175-y
    [20] Boru MAI, Xuejiao DENG, Fang ZHANG, Hao HE, Tian LUAN, Fei LI, Xia LIU, 2020: Background Characteristics of Atmospheric CO2 and the Potential Source Regions in the Pearl River Delta Region of China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 557-568.  doi: 10.1007/s00376-020-9238-z

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 1984
Manuscript revised: 10 July 1984
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

CHARACTERISTICS OF ATMOSPHERIC EXTINCTION-TO-BACKSCATTERING RATIO IN RUBY LIDAR MEASUREMENTS

  • 1. InstituteofAtmosphericphysics.Acadcmiatinica,Beijing,InstituteofAtmosphericphysics.Acadcmiatinica,Beijing

Abstract: In this paper the dependence of the ratio k (the atmospheric extinction-to-backscattering ratio) upon the aerosol refractive index and size distribution is theoretically studied in ruby lidar measurements. An empirical expression for the ratio k is then established. Moreover the effect of molecular scattering on the ratio k is discussed.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return