Advanced Search

Volume 1 Issue 2

Jul.  1984

Article Contents

A TWO-DIMENSIONAL ENERGY BALANCE CLIMATE MODEL INCLUDING RADIATION AND ICE CAPS-ALBEDO FEEDBACK


doi: 10.1007/BF02678136

  • A simplified two-dimensional energy balance climate model including the solar and infrared radiation transports, the turbulent exchanges of heat in vertical and horizontal directions and the ice caps-albedo feedback is developed The solutions show that if the atmosphere is considered as a grey body and the grey coefficient depends upon the distributions of absorption medium and cloudiness, both horizontal and vertical distributions of temperature are identical to the observation.On the other hand, comparing the models that the atmosphere is considered as a grey body with ones that the infrared radiation is parameterized as a linear function of temperature, as was considered by Budyko, Sellers(1969), then the results show that even though both of them can obtain the earth's surface temperature in agreement with the observation, the sensitiv ity of the climate to the changes of solar constant is very different. In the former case,the requirement for the ice edge to move southward from the normal 72°N to 50°N(i.e. where the glacial climate would take place) is that the solar constant should decrease by 13% to 16%. However, in the latter case, the climate is highly sensitive to the changes of solar radiation. In this case, the requirement of solar radiation occurring in the glacial climate should decrease by 2% to 6%. According to the investigations mentioned above we must be careful when the parameterizations of the radiation and other processes are conducted in a climate model, otherwise the reliability of the results is suspicious.
  • [1] Xun Zhu, 1988: A STEADY TWO-DIMENSIONAL CLIMATE MODEL WITH RESIDUAL CIRCULATION, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 455-468.  doi: 10.1007/BF02656791
    [2] Zhang Renjian, Wang Mingxing, Zeng Qingcun, 2000: Global Two-Dimensional Chemistry Model and Simulation of Atmospheric Chemical Composition, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 72-82.  doi: 10.1007/s00376-000-0044-3
    [3] Xu Yongfu, Wang Mingxing, 1998: A Two-Dimensional Zonally Averaged Ocean Carbon Cycle Model, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 370-379.  doi: 10.1007/s00376-998-0007-7
    [4] Yongkang Xue, 1991: A Two-Dimensional Coupled Biosphere-Atmosphere Model and Its Application, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 447-458.  doi: 10.1007/BF02919267
    [5] Sun Litan, Huang Meiyuan, 1994: Improving the Vorticity-Streamfunction Method to Solve Two-Dimensional Anelastic and Nonhydrostatic Model, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 247-249.  doi: 10.1007/BF02666551
    [6] Mozheng Wei, 1996: A Low-order Model of Two-dimensional Fluid Dynamics on the Surface of a Sphere, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 67-90.  doi: 10.1007/BF02657029
    [7] Hu Yinqiao, Su Congxian, Ge Zhengmo, 1988: A TWO-DIMENSIONAL AND STEADY-STATE NUMERICAL MODEL OF THE PLANETARY BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 523-534.  doi: 10.1007/BF02656796
    [8] Yang Hongwei, Wang Bin, Ji Zhongzhen, 2002: Application of the Artificial Compression Method to the Simulation of Two-Dimensional Frontogenesis, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 863-869.  doi: 10.1007/s00376-002-0051-7
    [9] S. Panchev, 1990: An Exact Solution for Two-Dimensional Frictionless Motion in the Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 137-141.  doi: 10.1007/BF02919151
    [10] Lei WANG, Qing BAO, Wei-Chyung WANG, Yimin LIU, Guo-Xiong WU, Linjiong ZHOU, Jiandong LI, Hua GONG, Guokui NIAN, Jinxiao LI, Xiaocong WANG, Bian HE, 2019: LASG Global AGCM with a Two-moment Cloud Microphysics Scheme: Energy Balance and Cloud Radiative Forcing Characteristics, ADVANCES IN ATMOSPHERIC SCIENCES, , 697-710.  doi: 10.1007/s00376-019-8196-9
    [11] Ken-ichi SHIMOSE, Ming XUE, Robert D. PALMER, Jidong GAO, Boon Leng CHEONG, David J. BODINE, 2013: Two-Dimensional Variational Analysis of Near-Surface Moisture from Simulated Radar Refractivity-Related Phase Change Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 291-305.  doi: 10.1007/s00376-012-2087-7
    [12] YUE Caijun, SHOU Shaowen, Xiaofan LI, 2009: Water Vapor, Cloud, and Surface Rainfall Budgets Associated with the Landfall of Typhoon Krosa (2007): A Two-Dimensional Cloud-Resolving Modeling Study, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1198-1208.  doi: 10.1007/s00376-009-8135-2
    [13] LI Xiaofan, SHEN Xinyong, LIU Jia, 2014: Effects of Doubled Carbon Dioxide on Rainfall Responses to Large-Scale Forcing: A Two-Dimensional Cloud-Resolving Modeling Study, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 525-531.  doi: 10.1007/s00376-013-3030-2
    [14] Shou Shaowen, Li Shenshen, 1991: Diagnosis of Kinetic Energy Balance of a Decaying Onland Typhoon, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 479-488.  doi: 10.1007/BF02919270
    [15] Xinrong WU, Shaoqing ZHANG, Zhengyu LIU, 2016: Implementation of a One-Dimensional Enthalpy Sea-Ice Model in a Simple Pycnocline Prediction Model for Sea-Ice Data Assimilation Studies, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 193-207.  doi: 10.1007/s00376-015-5099-2
    [16] Ji jinjun, 1989: Atmosphere-Ocean Coupling Schemes in a One-Dimensional Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 275-288.  doi: 10.1007/BF02661534
    [17] WANG Linlin, GAO Zhiqiu, MIAO Shiguang, GUO Xiaofeng, SUN Ting, Maofeng LIU, Dan LI, 2015: Contrasting Characteristics of the Surface Energy Balance between the Urban and Rural Areas of Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 505-514.  doi: 10.1007/s00376-014-3222-4
    [18] Minwei Qian, N. Loglisci, C. Cassardo, A. Longhetto, C. Giraud, 2001: Energy and Water Balance at Soil-Air Interface in a Sahelian Region, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 897-909.
    [19] SUN Shufen, ZHANG Xia, 2004: Effect of the Lower Boundary Position of the Fourier Equation on the Soil Energy Balance, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 868-878.  doi: 10.1007/BF02915589
    [20] WANG Runyuan, ZHANG Qiang, 2011: An Assessment of Storage Terms in the Surface Energy Balance of a Subalpine Meadow in Northwest China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 691-698.  doi: 10.1007/s00376-010-9152-x

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 1984
Manuscript revised: 10 July 1984
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A TWO-DIMENSIONAL ENERGY BALANCE CLIMATE MODEL INCLUDING RADIATION AND ICE CAPS-ALBEDO FEEDBACK

  • 1. InstituteofAtmosphericPhysics,AcademiaSinica,Beijing,InstituteofAtmosphericPhysics,AcademiaSinica,Beijing

Abstract: A simplified two-dimensional energy balance climate model including the solar and infrared radiation transports, the turbulent exchanges of heat in vertical and horizontal directions and the ice caps-albedo feedback is developed The solutions show that if the atmosphere is considered as a grey body and the grey coefficient depends upon the distributions of absorption medium and cloudiness, both horizontal and vertical distributions of temperature are identical to the observation.On the other hand, comparing the models that the atmosphere is considered as a grey body with ones that the infrared radiation is parameterized as a linear function of temperature, as was considered by Budyko, Sellers(1969), then the results show that even though both of them can obtain the earth's surface temperature in agreement with the observation, the sensitiv ity of the climate to the changes of solar constant is very different. In the former case,the requirement for the ice edge to move southward from the normal 72°N to 50°N(i.e. where the glacial climate would take place) is that the solar constant should decrease by 13% to 16%. However, in the latter case, the climate is highly sensitive to the changes of solar radiation. In this case, the requirement of solar radiation occurring in the glacial climate should decrease by 2% to 6%. According to the investigations mentioned above we must be careful when the parameterizations of the radiation and other processes are conducted in a climate model, otherwise the reliability of the results is suspicious.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return