Advanced Search

Volume 3 Issue 3

Jul.  1986

Article Contents

NUMERICAL SIMULATION OF THE GENERATION OF MESOSCALE CONVECTTVE SYSTEMS IN LARGE-SCALE ENVIRONMENT


doi: 10.1007/BF02678656

  • The generation of mesoscale convective systems is simulated by a 7-level primitive equation model. The large-scale parts of observed, data at 1200 Z June 11, 1983, which are obtained by low-pass filter, are used as the initial data. The results show that the generation of mesoscale convective systems can be simulated from fields of meteorological variables on the large-scale background. When the low-level south-west jet stream is very moist, mesoscale convective systems can develop ahead of the wind speed maximum in the warm sector of Jiang-Huai (Changjiang-Huaihe Rivers) cyclone, where the potential stability tends to remain negative. Furthermore, they are similar to the mesoscale convective complex (MCC), which appears frequently in the central part of the United States during the warm season (March to September), in dynamical and thermal structure, distribution of precipitation and the process of generation and development.
  • [1] Huw C. DAVIES, 2006: Large-Scale Weather Systems: A Future Research Priority, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 832-841.  doi: 10.1007/s00376-006-0832-5
    [2] Li Chongying, 1985: A NUMERICAL SIMULATION OF TYPHOON GENERATION, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 72-80.  doi: 10.1007/BF03179739
    [3] Chen Lianshou, Luo Zhexian, 2002: The Impact of the Eastward Shifting of Dipole Systems over Large-Scale Terrain on Tropical Cyclone Tracks, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 1069-1078.  doi: 10.1007/s00376-002-0065-1
    [4] Gong-Wang Si, Kuranoshin Kato, Takao Takeda, 1995: The Early Summer Seasonal Change of Large-scale Circulation over East Asia and Its Relation to Change of The Frontal Features and Frontal Rainfall Environment During 1991 Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 151-176.  doi: 10.1007/BF02656829
    [5] Jo-Han LEE, Dong-Kyou LEE, Hyun-Ha LEE, Yonghan CHOI, Hyung-Woo KIM, 2010: Radar Data Assimilation for the Simulation of Mesoscale Convective Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1025-1042.  doi: 10.1007/s00376-010-9162-8
    [6] Yating ZHAO, Ming XUE, Jing JIANG, Xiao-Ming HU, Anning HUANG, 2024: Assessment of Wet Season Precipitation in the Central United States by the Regional Climate Simulation of the WRFG Member in NARCCAP and Its Relationship with Large-Scale Circulation Biases, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 619-638.  doi: 10.1007/s00376-023-2353-x
    [7] Ji Zhengang, Chao Jiping, 1986: ON THE INFLUENCES OF LARGE-SCALE INHOMOGENEITY OF SEA TEMPERATURE UPON THE OCEANIC WAVES IN THE TROPICAL REGIONS PART II: LINEAR NUMERICAL EXPERIMENTS, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 238-244.  doi: 10.1007/BF02682557
    [8] Fan Beifen, Ye Jiadong, William R. Cotton, Gregory J. Tripoli, 1990: Numerical Simulation of Microphysics in Meso-β-Scale Convective Cloud System Associated with a Mesoscale Convective Complex, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 154-170.  doi: 10.1007/BF02919153
    [9] Eric P. CHASSIGNET, Xiaobiao XU, 2021: On the Importance of High-Resolution in Large-Scale Ocean Models, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1621-1634.  doi: 10.1007/s00376-021-0385-7
    [10] PU Shuzhen, ZHAO Jinping, YU Weidong, ZHAO Yongping, YANG Bo, 2004: Progress of Large-Scale Air-Sea Interaction Studies in China, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 383-398.  doi: 10.1007/BF02915566
    [11] Guoqing Li, Robin Kung, Richard L. Pfeffer, 1992: A Fluid Experiment of Large-Scale Topography Effect on Baroclinic Wave Flows, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 17-28.  doi: 10.1007/BF02656926
    [12] Gao Shouting, 1988: NONLINEAR ROSSBY WAVE INDUCED BY LARGE-SCALE TOPOGRAPHY, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 301-310.  doi: 10.1007/BF02656754
    [13] ZHOU Lingli, ZHAI Guoqing, HE Bin, 2011: Numerical Study of the Mesoscale Systems in the Spiral Rainband of 0509 Typhoon Matsa, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 118-128.  doi: 10.1007/s00376-010-0023-2
    [14] FANG Xiaoyi, JIANG Weimei, MIAO Shiguang, ZHANG Ning, XU Min, JI Chongping, CHEN Xianyan, WEI Jianmin, WANG Zhihua, WANG Xiaoyun, 2004: The Multi-Scale Numerical Modeling System for Research on the Relationship between Urban Planning and Meteorological Environment, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 103-112.  doi: 10.1007/BF02915684
    [15] Wang Huijun, Xue Feng, Zhou Guangqing, 2002: The Spring Monsoon in South China and Its Relationship to Large-Scale Circulation Features, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 651-664.  doi: 10.1007/s00376-002-0005-0
    [16] Jong-Kil PARK, LU Riyu, LI Chaofan, Eun Byul KIM, 2012: Interannual Variation of Tropical Night Frequency in Beijing and Associated Large-Scale Circulation Background, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 295-306.  doi: 10.1007/s00376-011-1141-1
    [17] Maeng-Ki KIM, Yeon-Hee KIM, 2010: Seasonal Prediction of Monthly Precipitation in China Using Large-Scale Climate Indices, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 47-59.  doi: 10.1007/s00376-009-8014-x
    [18] SU Qin, LU Riyu, LI Chaofan, 2014: Large-scale Circulation Anomalies Associated with Interannual Variation in Monthly Rainfall over South China from May to August, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 273-282.  doi: 10.1007/s00376-013-3051-x
    [19] Marco Y. T. LEUNG, Wen ZHOU, Chi-Ming SHUN, Pak-Wai CHAN, 2018: Large-scale Circulation Control of the Occurrence of Low-level Turbulence at Hong Kong International Airport, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 435-444.  doi: 10.1007/s00376-017-7118-y
    [20] FAN Lijun, XIONG Zhe, 2015: Using Quantile Regression to Detect Relationships between Large-scale Predictors and Local Precipitation over Northern China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 541-552.  doi: 10.1007/s00376-014-4058-7

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 1986
Manuscript revised: 10 July 1986
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

NUMERICAL SIMULATION OF THE GENERATION OF MESOSCALE CONVECTTVE SYSTEMS IN LARGE-SCALE ENVIRONMENT

  • 1. Institute of Meteorological Research, Headquarters of the General Staff, PLA, Beijing,Institute of Meteorological Research, Headquarters of the General Staff, PLA, Beijing

Abstract: The generation of mesoscale convective systems is simulated by a 7-level primitive equation model. The large-scale parts of observed, data at 1200 Z June 11, 1983, which are obtained by low-pass filter, are used as the initial data. The results show that the generation of mesoscale convective systems can be simulated from fields of meteorological variables on the large-scale background. When the low-level south-west jet stream is very moist, mesoscale convective systems can develop ahead of the wind speed maximum in the warm sector of Jiang-Huai (Changjiang-Huaihe Rivers) cyclone, where the potential stability tends to remain negative. Furthermore, they are similar to the mesoscale convective complex (MCC), which appears frequently in the central part of the United States during the warm season (March to September), in dynamical and thermal structure, distribution of precipitation and the process of generation and development.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return