Advanced Search

Volume 3 Issue 1

Jan.  1986

Article Contents

A STUDY ON THE RELATIONSHIP BETWEEN THE ROTATION OF BINARY TYPHOONS AND STEERING CURRENT


doi: 10.1007/BF02680050

  • Many studies show that, within a certain distance (ca. 700-800 n mi), two typhoons forming a binary typhoon (BT) system would rotate as a whole and attract each other, which is known as “Fuji-whara Effect” (FE). This paper indicates that only 30.3% of BTs has experienced remarkable cyclonic rotation with a 12-hr angle ≥+10° when two components are less than 20° lat apart, and that the probability is much higher with the eastern, component in the NE than in the SE quadrant for the western one, implying the steering effect of the environmental flow field (EFF) on them.47 observations from 13 BTs are separately used for calculating the angular velocity due to FE and EFF and the results are compared. The conclusion can be stated as follows: FE is dominant with the centers of two elements below 7° lat apart; the EFF steering current plays a major role when they are in the range of 7-15° and for a distance above 15° the principle of FE holds no longer.
  • [1] Shuang LUO, Yunfei FU, Shengnan ZHOU, Xiaofeng WANG, Dongyong WANG, 2020: Analysis of the Relationship between the Cloud Water Path and Precipitation Intensity of Mature Typhoons in the Northwest Pacific Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 359-376.  doi: 10.1007/s00376-020-9204-9
    [2] ZHANG Qiang, LI Hongyu, 2011: A Study of the Relationship between Air Pollutants and Inversion in the ABL over the City of Lanzhou, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 879-886.  doi: 10.1007/s00376-010-0079-z
    [3] Zhong Zhong, Wang Hanjie, 2000: A Study of the Relationship between Low-level Jet and Inversion Layer over an Agroforest Ecosystem in East China Plain?, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 299-310.  doi: 10.1007/s00376-000-0011-z
    [4] GONG Daoyi, Helge DRANGE, 2005: A Preliminary Study on the Relationship Between Arctic Oscillation and Daily SLP Variance in the Northern Hemisphere During Wintertime, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 313-327.  doi: 10.1007/BF02918745
    [5] He Shixiu, 1985: A STUDY OF THE RELATIONSHIP OF ZONAL WIND OSCILLATION BETWEEN EAST AUSTRALIA AND NORTHWESTERN PACIFIC TROPICAL AREA, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 478-486.  doi: 10.1007/BF02678746
    [6] Zhang Jianwen, Yu Shihua, 1998: A Diagnostic Study on the Relationship between the Assembling of Low Frequency Waves in the Pacific Ocean and the Abnormality of the Subtropical High, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 247-257.  doi: 10.1007/s00376-998-0043-3
    [7] Ding Yuguo, Jiang Zhihong, 1998: Theoretical Relationship between SSA and MESA with Both Application, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 541-552.  doi: 10.1007/s00376-998-0031-7
    [8] Xiaoyong YU, Chengyan LIU, Xiaocun WANG, Jian CAO, Jihai DONG, Yu LIU, 2022: Evaluation of Arctic Sea Ice Drift and its Relationship with Near-surface Wind and Ocean Current in Nine CMIP6 Models from China, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 903-926.  doi: 10.1007/s00376-021-1153-4
    [9] Guifu ZHANG, Vivek N. MAHALE, Bryan J. PUTNAM, Youcun QI, Qing CAO, Andrew D. BYRD, Petar BUKOVCIC, Dusan S. ZRNIC, Jidong GAO, Ming XUE, Youngsun JUNG, Heather D. REEVES, Pamela L. HEINSELMAN, Alexander RYZHKOV, Robert D. PALMER, Pengfei ZHANG, Mark WEBER, Greg M. MCFARQUHAR, Berrien MOORE III, Yan ZHANG, Jian ZHANG, J. VIVEKANANDAN, Yasser AL-RASHID, Richard L. ICE, Daniel S. BERKOWITZ, Chong-chi TONG, Caleb FULTON, Richard J. DOVIAK, 2019: Current Status and Future Challenges of Weather Radar Polarimetry: Bridging the Gap between Radar Meteorology/Hydrology/Engineering and Numerical Weather Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 571-588.  doi: 10.1007/s00376-019-8172-4
    [10] Xinping XU, Shengping HE, Huijun WANG, 2020: Relationship between Solar Wind−Magnetosphere Energy and Eurasian Winter Cold Events, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 652-661.  doi: 10.1007/s00376-020-9153-3
    [11] WANG Zhongrui, Song FENG, TANG Maocang, 2003: A Relationship between Solar Activity and Frequency of Natural Disasters in China, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 934-939.  doi: 10.1007/BF02915516
    [12] LIN Wantao, 2004: The Relationship between Nonconservative Schemes and Initial Values of Nonlinear Evolution Equations, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 277-282.  doi: 10.1007/BF02915714
    [13] ZHU Yali, WANG Huijun, 2010: The Relationship between the Aleutian Low and the Australian Summer Monsoon at Interannual Time Scales, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 177-184.  doi: 10.1007/s00376-009-8144-1
    [14] Renguang WU, 2017: Relationship between Indian and East Asian Summer Rainfall Variations, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 4-15.  doi: 10.1007/s00376-016-6216-6
    [15] WU Yunfei, ZHANG Renjian, HAN Zhiwei, ZENG Zhaomei, 2010: Relationship between East Asian Monsoon and Dust Weather Frequency over Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1389-1398.  doi: 10.1007/s00376-010-9181-5
    [16] YAN Hongming, YANG Hui, YUAN Yuan, LI Chongyin, 2011: Relationship Between East Asian Winter Monsoon and Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1345-1356.  doi: 10.1007/s00376-011-0014-y
    [17] HU Bo, WANG Yuesi, LIU Guangren, 2012: Relationship between Net Radiation and Broadband Solar Radiation in the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 135-143.  doi: 10.1007/s00376-011-0221-6
    [18] WANG Weiwen, WANG Dongxiao, ZHOU Wen, LIU Qinyan, YU Yongqiang, LI Chao, 2011: Impact of the South China Sea Throughflow on the Pacific Low-Latitude Western Boundary Current: A Numerical Study for Seasonal and Interannual Time Scales, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1367-1376.  doi: 10.1007/s00376-011-0142-4
    [19] Keon Tae SOHN, Sun Min PARK, 2008: Guidance on the Choice of Threshold for Binary Forecast Modeling, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 83-88.  doi: 10.1007/s00376-008-0083-8
    [20] Ding Jincai, Tang Xinzhang, 1986: AN ANALYSIS OF THE CAUSES OF MEANDERING TRACKS OF TYPHOONS, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 252-261.  doi: 10.1007/BF02682559

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 1986
Manuscript revised: 10 January 1986
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A STUDY ON THE RELATIONSHIP BETWEEN THE ROTATION OF BINARY TYPHOONS AND STEERING CURRENT

  • 1. Department of Atmospheric Sciences, Nanjing University, Nanjing,Department of Meteorology, Nanjing Institute of Meteorology, Nanjing,Department of Meteorology, Nanjing Institute of Meteorology, Nanjing

Abstract: Many studies show that, within a certain distance (ca. 700-800 n mi), two typhoons forming a binary typhoon (BT) system would rotate as a whole and attract each other, which is known as “Fuji-whara Effect” (FE). This paper indicates that only 30.3% of BTs has experienced remarkable cyclonic rotation with a 12-hr angle ≥+10° when two components are less than 20° lat apart, and that the probability is much higher with the eastern, component in the NE than in the SE quadrant for the western one, implying the steering effect of the environmental flow field (EFF) on them.47 observations from 13 BTs are separately used for calculating the angular velocity due to FE and EFF and the results are compared. The conclusion can be stated as follows: FE is dominant with the centers of two elements below 7° lat apart; the EFF steering current plays a major role when they are in the range of 7-15° and for a distance above 15° the principle of FE holds no longer.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return