Advanced Search
Article Contents

Operational Implementation of the ATOVS Processing Procedure in KMA and Its Validation


doi: 10.1007/BF02690798

  • The Korea Meteorological Administration (KMA) has processed the data from the advanced TOVS(ATOVS) onboard NOAA-16 satellite since May 2001. The operational production utilizes the AAPP(ATOVS and AVHRR Processing Package) of EUMETSAT and IAPP (International ATOVS ProcessingPackage) of the University of Wisconsin. For the initial guess profiles, the predicted fields (usually 6 to 12hour forecasted fields) from the global aviation model of NOAA/NCEP are used. The average number ofprofiles retrieved from the ATOVS data is about 1,300 for each morning and afternoon orbit at about 18 and06 UTC, respectively. The retrieved temperature and dew point temperatures are provided to forecastersin real time and used for initialization of prediction models. With the advanced microwave sensor (AMSU;Advanced Microwave Sounding Unit), accuracy of the ATOVS products is expected to be better than thatof the TOVS products, especially in cloudy conditions. Indeed, the preliminary results from a validationstudy with the collocated radiosonde data during a 8-month period, from May to December 2001, for theEast Asia region show an improved accuracy of the ATOVS products for cloudy skies versus the TOVS,especially for higher altitudes. The RMS (Root Mean Square) difference between the ATOVS productsand radiosonde data is about 1.3℃ for both clear and cloudy conditions, except for near the ground and athigher altitudes, at around 200 hPa. There is no significant temporal variation of the error statistics at allpressure levels. In case of the water vapor mixing ratio, the largest difference is shown at lower altitudes,while the accuracy is much better for the clear sky cases than the cloudy sky cases. The bias and RMSEat lower altitudes is about 0.557 g kg-1 and 2.5 g kg-1 and decrease significantly with increasing altitude.
  • [1] Qiumeng XUE, Li GUAN, Xiaoning SHI, 2022: One-Dimensional Variational Retrieval of Temperature and Humidity Profiles from the FY4A GIIRS, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 471-486.  doi: 10.1007/s00376-021-1032-z
    [2] Yidan SI, Shenshen LI, Liangfu CHEN, Chao YU, Zifeng WANG, Yang WANG, Hongmei WANG, 2018: Validation and Spatiotemporal Distribution of GEOS-5-Based Planetary Boundary Layer Height and Relative Humidity in China, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 479-492.  doi: 10.1007/s00376-017-6275-3
    [3] ZHANG Jie, Zhenglong LI, Jun LI, Jinglong LI, 2014: Ensemble Retrieval of Atmospheric Temperature Profiles from AIRS, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 559-569.  doi: 10.1007/s00376-013-3094-z
    [4] Liu Changsheng, 1988: REMOTE SENSING OF TEMPERATURE PROFILES IN THE BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 67-74.  doi: 10.1007/BF02657346
    [5] Wei Chong, Xue Yongkang, Zhu Xiaoming, Zou Shouxiang, 1984: DETERMINATION OF ATMOSPHERIC PRECIPITABLE WATER AND HUMIDITY PROFILES BY A GROUND-BASED 1.35 cm RADIOMETER, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 119-139.  doi: 10.1007/BF03187623
    [6] Julian X.L. Wang, Dian J. Gaffen, 2001: Trends in Extremes of Surface Humidity, Temperature, and Summertime Heat Stress in China, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 742-751.
    [7] YAO Zhigang, CHEN Hongbin, LIN Longfu, 2005: Retrieving Atmospheric Temperature Profiles from AMSU-A Data with Neural Networks, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 606-616.  doi: 10.1007/BF02918492
    [8] HUANG Jing, QIU Chongjian, MA Gang, ZHANG Yanwu, 2006: Estimating the Retrievability of Temperature Profiles from Satellite Infrared Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 224-234.  doi: 10.1007/s00376-006-0224-x
    [9] ZHANG Lei, QIU Chongjian, HUANG Jianping, 2008: A Three-Dimensional Satellite Retrieval Method for Atmospheric Temperature and Moisture Profiles, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 897-904.  doi: 10.1007/s00376-008-0897-4
    [10] Ting WANG, Jianfang FEI, Xiaoping CHENG, Xiaogang HUANG, Jian ZHONG, 2018: Estimating the Correlated Observation-Error Characteristics of the Chinese FengYun Microwave Temperature Sounder and Microwave Humidity Sounder, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1428-1441.  doi: 10.1007/s00376-018-8014-9
    [11] GAO Zhiqiu, BIAN Lingen, CHEN Zhigang, Michael SPARROW, ZHANG Jiahua, 2006: Turbulent Variance Characteristics of Temperature and Humidity over a Non-uniform Land Surface for an Agricultural Ecosystem in China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 365-374.  doi: 10.1007/s00376-006-0365-y
    [12] Kyu Rang KIM, Tae Heon KWON, Yeon-Hee KIM, Hae-Jung KOO, Byoung-Cheol CHOI, Chee-Young CHOI, 2009: Restoration of an Inner-City Stream and Its Impact on Air Temperature and Humidity Based on Long-Term Monitoring Data, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 283-292.  doi: 10.1007/s00376-009-0283-x
    [13] BIAN Jianchun, CHEN Hongbin, Holger VOMEL, DUAN Yunjun, XUAN Yuejian, LU Daren, 2011: Intercomparison of Humidity and Temperature Sensors: GTS1, Vaisala RS80, and CFH, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 139-146.  doi: 10.1007/s00376-010-9170-8
    [14] ZHENG Jing, Jun LI, Timothy J. SCHMIT, Jinlong LI, Zhiquan LIU, 2015: The Impact of AIRS Atmospheric Temperature and Moisture Profiles on Hurricane Forecasts: Ike (2008) and Irene (2011), ADVANCES IN ATMOSPHERIC SCIENCES, 32, 319-335.  doi: 10.1007/s00376-014-3162-z
    [15] Li Jun, Zhou Fengxian, Zeng Qingcun, 1994: Simultaneous Non-linear Retrieval of Atmospheric Temperature and Absorbing Constituent Profiles from Satellite Infrared Sounder Radiances, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 128-138.  doi: 10.1007/BF02666541
    [16] Peipei YU, Chunxiang SHI, Ling YANG, Shuai SHAN, 2020: A New Temperature Channel Selection Method Based on Singular Spectrum Analysis for Retrieving Atmospheric Temperature Profiles from FY-4A/GIIRS, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 735-750.  doi: 10.1007/s00376-020-9249-9
    [17] LI Nan, WEI Ming, TANG Xiaowen, PAN Yujie, 2007: An Improved Velocity Volume Processing Method, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 893-906.  doi: 10.1007/s00376-007-0893-0
    [18] LI Tao, ZHENG Xiaogu, DAI Yongjiu, YANG Chi, CHEN Zhuoqi, ZHANG Shupeng, WU Guocan, WANG Zhonglei, HUANG Chengcheng, SHEN Yan, LIAO Rongwei, 2014: Mapping Near-surface Air Temperature, Pressure, Relative Humidity and Wind Speed over Mainland China with High Spatiotemporal Resolution, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1127-1135.  doi: 10.1007/s00376-014-3190-8
    [19] Peng ZHANG, Qifeng LU, Xiuqing HU, Songyan GU, Lei YANG, Min MIN, Lin CHEN, Na XU, Ling Sun, Wenguang BAI, Gang MA, Di XIAN, 2019: Latest Progress of the Chinese Meteorological Satellite Program and Core Data Processing Technologies, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1027-1045.  doi: 10.1007/s00376-019-8215-x
    [20] ZHANG Hua, XUE Jishan, ZHU Guofu, ZHUANG Shiyu, WU Xuebao, ZHANG Fengying, 2004: Application of Direct Assimilation of ATOVS Microwave Radiances to Typhoon Track Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 283-290.  doi: 10.1007/BF02915715

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2003
Manuscript revised: 10 May 2003
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Operational Implementation of the ATOVS Processing Procedure in KMA and Its Validation

  • 1. Remote Sensing Research Laboratory/Meteorological Research Institute, Seoul 156-720, Korea,Remote Sensing Research Laboratory/Meteorological Research Institute, Seoul 156-720, Korea,Remote Sensing Research Laboratory/Meteorological Research Institute, Seoul 156-720, Korea,Remote Sensing Research Laboratory/Meteorological Research Institute, Seoul 156-720, Korea

Abstract: The Korea Meteorological Administration (KMA) has processed the data from the advanced TOVS(ATOVS) onboard NOAA-16 satellite since May 2001. The operational production utilizes the AAPP(ATOVS and AVHRR Processing Package) of EUMETSAT and IAPP (International ATOVS ProcessingPackage) of the University of Wisconsin. For the initial guess profiles, the predicted fields (usually 6 to 12hour forecasted fields) from the global aviation model of NOAA/NCEP are used. The average number ofprofiles retrieved from the ATOVS data is about 1,300 for each morning and afternoon orbit at about 18 and06 UTC, respectively. The retrieved temperature and dew point temperatures are provided to forecastersin real time and used for initialization of prediction models. With the advanced microwave sensor (AMSU;Advanced Microwave Sounding Unit), accuracy of the ATOVS products is expected to be better than thatof the TOVS products, especially in cloudy conditions. Indeed, the preliminary results from a validationstudy with the collocated radiosonde data during a 8-month period, from May to December 2001, for theEast Asia region show an improved accuracy of the ATOVS products for cloudy skies versus the TOVS,especially for higher altitudes. The RMS (Root Mean Square) difference between the ATOVS productsand radiosonde data is about 1.3℃ for both clear and cloudy conditions, except for near the ground and athigher altitudes, at around 200 hPa. There is no significant temporal variation of the error statistics at allpressure levels. In case of the water vapor mixing ratio, the largest difference is shown at lower altitudes,while the accuracy is much better for the clear sky cases than the cloudy sky cases. The bias and RMSEat lower altitudes is about 0.557 g kg-1 and 2.5 g kg-1 and decrease significantly with increasing altitude.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return