Advanced Search
Article Contents

Numerical Study on the Velocity Structure around Tidal Fronts in the Yellow Sea


doi: 10.1007/BF02690803

  • The velocity components across tidal fronts are examined using the Blumberg and Mellor 3-D nonlinearnumerical coastal circulation model incorporated with the Mellor and Yamada level 2.5 turbulent closuremodel based on the reasonable model output of the M2 tide and density residual currents. In the numericalexperiments, upwelling motion appears around all the fronts with different velocity structures, accountingfor surface cold water around the fronts. The experiments also suggest that the location and formation offronts are closely related to topography and tidal mixing, as is the velocity structure around the front.
  • [1] REN Shihe, XIE Jiping, ZHU Jiang*, 2014: The Roles of Different Mechanisms Related to the Tide-induced Fronts in the Yellow Sea in Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1079-1089.  doi: 10.1007/s00376-014-3236-y
    [2] Qingchang QIN, Xueshun SHEN, Chungang CHEN, Feng XIAO, Yongjiu DAI, Xingliang LI, 2019: A 3D Nonhydrostatic Compressible Atmospheric Dynamic Core by Multi-moment Constrained Finite Volume Method, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1129-1142.  doi: 10.1007/s00376-019-9002-4
    [3] Guoping SHI, Xinfa QIU, Yan ZENG, 2018: New Method for Estimating Daily Global Solar Radiation over Sloped Topography in China, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 285-295.  doi: 10.1007/s00376-017-6243-y
    [4] Xinlin YANG, Jianhua SUN, 2018: Organizational Modes of Severe Wind-producing Convective Systems over North China, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 540-549.  doi: 10.1007/s00376-017-7114-2
    [5] Shaukat ALI, DAN Li, FU Congbin, YANG Yang, 2015: Performance of Convective Parameterization Schemes in Asia Using RegCM: Simulations in Three Typical Regions for the Period 1998-2002, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 715-730.  doi: 10.1007/s00376-014-4158-4
    [6] Mengyu DENG, Riyu LU, Chaofan LI, 2022: Contrasts between the Interannual Variations of Extreme Rainfall over Western and Eastern Sichuan in Mid-summer, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 999-1011.  doi: 10.1007/s00376-021-1219-3
    [7] Fang Juan, Wu Rongsheng, 2001: Topographic Effect on Geostrophic Adjustment and Frontogenesis, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 524-538.  doi: 10.1007/s00376-001-0042-0
    [8] Rolf Müller, 1993: Stable and Unstable Eigensolutions of Laplace’s Tidal Equations for Zonal Wavenumber Zero, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 21-40.  doi: 10.1007/BF02656951
    [9] P.C.S. Devara, G. Chandrasekhar, M.I. Ahmed, 1989: Some Aspects of the Diurnal and Semidiurnal Tidal Wind Field in Meteor Zone, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 357-364.  doi: 10.1007/BF02661541
    [10] LAN Weiren, HUANG Sixun, XIANG Jie, 2004: Generalized Method of Variational Analysis for 3-D Flow, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 730-740.  doi: 10.1007/BF02916370
    [11] CHEN Lianshou, LUO Zhexian, 2004: A Study of the Effect of Topography on the Merging of Vortices, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 13-22.  doi: 10.1007/BF02915676
    [12] HAN Guijun, LI Wei, HE Zhongjie, LIU Kexiu, MA Jirui, 2006: Assimilated Tidal Results of Tide Gauge and TOPEX/POSEIDON Data over the China Seas Using a Variational Adjoint Approach with a Nonlinear Numerical Model, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 449-460.  doi: 10.1007/s00376-006-0449-8
    [13] Gu Wei, Wu Rongsheng, 1992: The Theory Study of the Influence of the Topography on the Cold Frontal Motion, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 167-172.  doi: 10.1007/BF02657507
    [14] Zhao Ming, 1991: The Effect of Topography on Quasi-Geostrophic Frontogenesis, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 23-40.  doi: 10.1007/BF02657362
    [15] ZHANG Zhongshi, WANG Huijun, GUO Zhengtang, JIANG Dabang, 2006: Impact of Topography and Land-Sea Distribution on East Asian Paleoenvironmental Patterns, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 258-266.  doi: 10.1007/s00376-006-0258-0
    [16] Qian Yongfu, Zhong Zhong, 1986: GENERAL FORMS OF DYNAMIC EQUATIONS FOR ATMOSPHERE IN NUMERICAL MODELS WITH TOPOGRAPHY, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 10-22.  doi: 10.1007/BF02680042
    [17] Guoqing Li, Robin Kung, Richard L. Pfeffer, 1992: A Fluid Experiment of Large-Scale Topography Effect on Baroclinic Wave Flows, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 17-28.  doi: 10.1007/BF02656926
    [18] YIN Shuiqing, LI Weijing, Deliang CHEN, Jee-Hoon JEONG, GUO Wenli, 2011: Diurnal Variations of Summer Precipitation in the Beijing Area and the Possible Effect of Topography and Urbanization, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 725-734.  doi: 10.1007/s00376-010-9240-y
    [19] Zhu Zhengxin, 1985: EQUILIBRIUM STATES OF PLANETARY WAVES FORCED BY TOPOGRAPHY AND PERTURBATION HEATING AND BLOCKING SITUATION, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 359-367.  doi: 10.1007/BF02677252
    [20] Gao Shouting, 1988: NONLINEAR ROSSBY WAVE INDUCED BY LARGE-SCALE TOPOGRAPHY, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 301-310.  doi: 10.1007/BF02656754

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2003
Manuscript revised: 10 May 2003
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Numerical Study on the Velocity Structure around Tidal Fronts in the Yellow Sea

  • 1. Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071;ICCES, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,National Natural Science Foundation of China, Beijing 100085,Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071,Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071

Abstract: The velocity components across tidal fronts are examined using the Blumberg and Mellor 3-D nonlinearnumerical coastal circulation model incorporated with the Mellor and Yamada level 2.5 turbulent closuremodel based on the reasonable model output of the M2 tide and density residual currents. In the numericalexperiments, upwelling motion appears around all the fronts with different velocity structures, accountingfor surface cold water around the fronts. The experiments also suggest that the location and formation offronts are closely related to topography and tidal mixing, as is the velocity structure around the front.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return