Advanced Search
Article Contents

Association between Tropical Convection and Boreal Wintertime Extratropical Circulation in 1982/83 and 1988/89


doi: 10.1007/BF02915502

  • Boreal wintertime extratropical circulation is studied in relation to the tropical convection during the1982/83 El Nino and 1988/89 La Nina. The anomaly structure of 1982/83 and 1988/89 over the extratropicsreveals remarkably different features as the longitudinal tropical forcing region changes. The Rossby wavesource (Positive) shows the largest maximum over East Asia in both years due to the persistent heating fromthe western Pacific warm pool area. However, the sink term shows contrasting features over the subtropicsand extratropics between the two years. In the El Nino year, enhanced tropical convection over the easternPacific produces the Rossby wave sink at 10°N and shifted eastward over the North Pacific, while in theLa Nina year, the sink area is shifted westward over the North Pacific. The contrasting features betweenthe two events in mean-eddy interaction appears especially over the downstream area of the East AsianJet. The extension (retraction) of the meanflow eastward (westward) to the east (west) of the datelineis related with the effect of the westward (eastward) E-vector and the strengthening (weakening) of thenegative anomalies of the barotropic growth of kinetic energy. Hence, almost opposite characteristicsbetween the two events can explain the close relationship of tropical convection and the extratropicalinternal variability.
  • [1] Zhen HUANG, Shuanglin LI, Jianying LI, Chao ZHANG, 2023: The Combined Effects of the Tropical and Extratropical Quasi-biweekly Oscillations on the Record-setting Mei-yu Rainfall in the Summer of 2020, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 663-681.  doi: 10.1007/s00376-022-2050-1
    [2] Jae-Young BYON, Gyu-Ho LIM, 2005: Diurnal Variation of Tropical Convection during TOGA COARE IOP, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 685-702.  doi: 10.1007/BF02918712
    [3] Dayong WEN, Jie CAO, 2023: Interdecadal Variations of the March Atmospheric Heat Source over the Southeast Asian Low-Latitude Highlands, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1584-1596.  doi: 10.1007/s00376-023-2146-2
    [4] Guo Pinwen, Tian Hong, Liu Xuanfei, 2000: Tropical Convective Activities Related to Summer Rainfall Anomaly in China, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 121-128.  doi: 10.1007/s00376-000-0048-z
    [5] Xiaowei HONG, Riyu LU, Shuanglin LI, 2018: Asymmetric Relationship between the Meridional Displacement of the Asian Westerly Jet and the Silk Road Pattern, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 389-397.  doi: 10.1007/s00376-017-6320-2
    [6] Yun-Young LEE, Richard GROTJAHN, 2019: Evidence of Specific MJO Phase Occurrence with Summertime California Central Valley Extreme Hot Weather, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 589-602.  doi: 10.1007/s00376-019-8167-1
    [7] Sining LING, Riyu LU, Hao LIU, Yali YANG, 2023: Interannual Meridional Displacement of the Upper-Tropospheric Westerly Jet over Western East Asia in Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1298-1308.  doi: 10.1007/s00376-022-2279-8
    [8] WANG Huijun, 2005: The Circum-Pacific Teleconnection Pattern in Meridional Wind in the High Troposphere, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 463-466.  doi: 10.1007/BF02918759
    [9] Zhuojian Yuan, Donald R. Johnson, 1998: The Role of Diabatic Heating, Torques and Stabilities in Forcing the Radial-Vertical Circulation within Cyclones Part II: Case Study of Extratropical and Tropical Cyclones, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 447-488.  doi: 10.1007/s00376-998-0026-4
    [10] Yao HA, Zhong ZHONG, Haikun ZHAO, Yimin ZHU, Yao YAO, Yijia HU, 2022: A Climatological Perspective on Extratropical Synoptic-Scale Transient Eddy Activity Response to Western Pacific Tropical Cyclones, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 333-343.  doi: 10.1007/s00376-021-0375-9
    [11] Luo Dehai, 1999: Nonlinear Three-Wave Interaction among Barotropic Rossby Waves in a Large-scale Forced Barotropic Flow, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 451-466.  doi: 10.1007/s00376-999-0023-2
    [12] Zhang Ren, Yu Zhihao, 2000: Low-Frequency CISK-Rossby Wave and Stratospheric QBO in the Tropical Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 311-321.  doi: 10.1007/s00376-000-0012-y
    [13] Hu Zengzhen, Tsuyoshi Nitta, 1997: Seasonality of the Interaction between Convection over the Western Pacific and General Circulation in the Northern Hemisphere, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 541-553.  doi: 10.1007/s00376-997-0072-3
    [14] Zeng Qingcun, Zhang Minghua, 2000: Wave-Mean Flow Interaction: the Role of Continuous-Spectrum Disturbances, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 1-17.  doi: 10.1007/s00376-000-0039-0
    [15] HONG Jieli, LIU Yimin, 2012: Contrasts of Atmospheric Circulation and Associated Tropical Convection between Huaihe River Valley and Yangtze River Valley Mei-yu Flooding, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 755-768.  doi: 10.1007/s00376-012-1217-6
    [16] Yanying CHEN, Ning JIANG, Yang AI, Kang XU, Longjiang MAO, 2023: Influences of MJO-induced Tropical Cyclones on the Circulation-Convection Inconsistency for the 2021 South China Sea Summer Monsoon Onset, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 262-272.  doi: 10.1007/s00376-022-2103-5
    [17] PENG Jiayi, FANG Juan, WU Rongsheng, 2004: Interaction of Mesoscale Convection and Frontogenesis, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 814-823.  doi: 10.1007/BF02916377
    [18] Zhang Zhenyue, 1988: TROPICAL GRAVITY-ATMOSPHERIC LONG WAVE AND THE WALKER CIRCULATION, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 265-276.  doi: 10.1007/BF02656751
    [19] Chuandong ZHU, Rongcai REN, Guoxiong WU, 2018: Varying Rossby Wave Trains from the Developing to Decaying Period of the Upper Atmospheric Heat Source over the Tibetan Plateau in Boreal Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1114-1128.  doi: 10.1007/s00376-017-7231-y
    [20] Dehai LUO, Binhe LUO, Wenqi ZHANG, 2023: A Perspective on the Evolution of Atmospheric Blocking Theories: From Eddy-Mean flow Interaction to Nonlinear Multiscale Interaction, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 553-569.  doi: 10.1007/s00376-022-2194-z

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2003
Manuscript revised: 10 July 2003
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Association between Tropical Convection and Boreal Wintertime Extratropical Circulation in 1982/83 and 1988/89

  • 1. Climate Research Laboratory, Meteorological Research Institute, Seoul, 156-720, Korea,Department of Atmospheric Sciences, Pusan National University, Pusan, 609-735, Korea

Abstract: Boreal wintertime extratropical circulation is studied in relation to the tropical convection during the1982/83 El Nino and 1988/89 La Nina. The anomaly structure of 1982/83 and 1988/89 over the extratropicsreveals remarkably different features as the longitudinal tropical forcing region changes. The Rossby wavesource (Positive) shows the largest maximum over East Asia in both years due to the persistent heating fromthe western Pacific warm pool area. However, the sink term shows contrasting features over the subtropicsand extratropics between the two years. In the El Nino year, enhanced tropical convection over the easternPacific produces the Rossby wave sink at 10°N and shifted eastward over the North Pacific, while in theLa Nina year, the sink area is shifted westward over the North Pacific. The contrasting features betweenthe two events in mean-eddy interaction appears especially over the downstream area of the East AsianJet. The extension (retraction) of the meanflow eastward (westward) to the east (west) of the datelineis related with the effect of the westward (eastward) E-vector and the strengthening (weakening) of thenegative anomalies of the barotropic growth of kinetic energy. Hence, almost opposite characteristicsbetween the two events can explain the close relationship of tropical convection and the extratropicalinternal variability.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return