Advanced Search
Article Contents

Validation of Sea Level Data in the East Asian Marginal Seas:Comparison between TOPEX/POSEIDON Altimeter and In-Situ Tide Gauges


doi: 10.1007/BF02915508

  • In an effort to assess the reliability of satellite altimeter systems, the authors conduct a comparativeanalysis of sea level data that were collected from the TOPEX/POSEIDON (T/P) altimeter and 10 tidegauges (TG) near the satellite passing ground tracks. The analysis is made using datasets collected frommarginal sea regions surrounding the Korean Peninsula at T/P cycles of 2 to 230, which correspond toOctober 1992 to December 1998. Proper treatment of tidal errors is a very critical step in data processingbecause the study area has very strong tide. When the T/P data are processed, the procedures of Parkand Gamberoni (1995) are adapted to reduce errors associated with the tide. When the T/P data areprocessed in this way, the alias periods of M2, S2, and K1 constituents are found to be 62.1, 58.7, and 173days repectively. The compatibility of the T/P and TG datasets are examined at various filtering periods.The results indicate that the low-frequency signals of the T/P data can be interpreted more safely withlonger filtering periods (such as up to the maximum selected value of 200 days). When RMS errors forthe 200-day low-pass filter period are compared with all 10 tidal stations, the values span the range of2.8 to 6.7 cm. The results of a correlation analysis for this filtering period also show a strong agreementbetween the T/P and TG datasets across all stations investigated (e.g., p-values consistently less than0.001 ). Hence according to the analysis, the conclusion is made that the analysis of surface sea level usingsatellite altimeter data can be made safely with reasonably extended filtering periods such as 200 days.
  • [1] Yong-Hoon YOUN, Im Sang OH, Young-Hyang PARK, Ki-Hyun KIM, 2004: Climate Variabilities of Sea Level around the Korean Peninsula, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 617-626.  doi: 10.1007/BF02915729
    [2] HAN Guijun, LI Wei, HE Zhongjie, LIU Kexiu, MA Jirui, 2006: Assimilated Tidal Results of Tide Gauge and TOPEX/POSEIDON Data over the China Seas Using a Variational Adjoint Approach with a Nonlinear Numerical Model, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 449-460.  doi: 10.1007/s00376-006-0449-8
    [3] Sung Hyup YOU, Yong Hee LEE, Woo Jeong LEE, 2011: Parameterization and Application of Storm Surge/Tide Modeling Using a Genetic Algorithm for Typhoon Periods, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1067-1076.  doi: 10.1007/s00376-011-0113-9
    [4] Deliang CHEN, Anders OMSTEDT, 2005: Climate-Induced Variability of Sea Level in Stockholm: Influence of Air Temperature and Atmospheric Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 655-664.  doi: 10.1007/BF02918709
    [5] REN Shihe, XIE Jiping, ZHU Jiang*, 2014: The Roles of Different Mechanisms Related to the Tide-induced Fronts in the Yellow Sea in Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1079-1089.  doi: 10.1007/s00376-014-3236-y
    [6] Yongguang ZHENG, Ming XUE, Bo LI, Jiong CHEN, Zuyu TAO, 2016: Spatial Characteristics of Extreme Rainfall over China with Hourly through 24-Hour Accumulation Periods Based on National-Level Hourly Rain Gauge Data, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1218-1232.  doi: 10.1007/s00376-016-6128-5
    [7] Lin WANG, Gang HUANG, Wen ZHOU, Wen CHEN, 2016: Historical Change and Future Scenarios of Sea Level Rise in Macau and Adjacent Waters, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 462-475.  doi: 10.1007/s00376-015-5047-1
    [8] Jinping WANG, Xianyao CHEN, 2023: Arctic Sea Level Variability from Oceanic Reanalysis and Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 2362-2377.  doi: 10.1007/s00376-023-3004-y
    [9] LIU Xiaoyang, MAO Jietai, ZHU Yuanjing, LI Jiren, 2003: Runoff Simulation Using Radar and Rain Gauge Data, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 213-218.  doi: 10.1007/s00376-003-0006-7
    [10] Jianjun Xu, Johnny C. L. Chan, 2002: Interannual and Interdecadal Variability of Winter Precipitation over China in Relation to Global Sea Level Pressure Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 914-926.  doi: 10.1007/s00376-002-0055-3
    [11] Weiwen WANG, Wen ZHOU, 2017: Statistical Modeling and Trend Detection of Extreme Sea Level Records in the Pearl River Estuary, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 383-396.  doi: 10.1007/s00376-016-6041-y
    [12] YAN Qing*, WANG Huijun, Ola M. JOHANNESSEN, and ZHANG Zhongshi, 2014: Greenland Ice Sheet Contribution to Future Global Sea Level Rise based on CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 8-16.  doi: 10.1007/s00376-013-3002-6
    [13] WU Bingyi, WANG Dongxiao, HUANG Ronghui, 2003: Relationship between Sea Level Pressures of the Winter Tropical Western Pacific and the Subsequent Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 496-510.  doi: 10.1007/BF02915494
    [14] Bruno FERRERO, Marcos TONELLI, Fernanda MARCELLO, Ilana WAINER, 2021: Long-term Regional Dynamic Sea Level Changes from CMIP6 Projections, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 157-167.  doi: 10.1007/s00376-020-0178-4
    [15] DONG Lu, and ZHOU Tianjun, 2013: Steric Sea Level Change in Twentieth Century Historical Climate Simulation and IPCC-RCP8.5 Scenario Projection: A Comparison of Two Versions of FGOALS Model, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 841-854.  doi: 10.1007/s00376-012-2224-3
    [16] HAN Xue, WEI Fengying, Yves M. TOURRE, DONG Wenjie, 2008: Spatio-temporal Variability of Northern Hemipheric Sea Level Pressure (SLP) and Precipitation over the Mid-to-Low Reaches of the Yangtze River, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 458-466.  doi: 10.1007/s00376-008-0458-x
    [17] Wu Xiangding, J. M. Lough, 1987: ESTIMATING NORTH PACIFIC SUMMER SEA-LEVEL PRES-SURE BACK TO 1600 USING PROXY CLIMATE RECORDS FROM CHINA AND NORTH AMERICA, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 74-84.  doi: 10.1007/BF02656663
    [18] Suping NIE, Tongwen WU, Yong LUO, Xueliang DENG, Xueli SHI, Zaizhi WANG, Xiangwen LIU, Jianbin HUANG, 2016: A Strategy for Merging Objective Estimates of Global Daily Precipitation from Gauge Observations, Satellite Estimates, and Numerical Predictions, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 889-904.  doi: 10.1007/s00376-016-5223-y
    [19] LI Guoqing, 2005: 27.3-day and 13.6-day Atmospheric Tide and Lunar Forcing on Atmospheric Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 359-374.  doi: 10.1007/BF02918750
    [20] Michael Edgeworth McINTYRE, 2017: On Multi-Level Thinking and Scientific Understanding, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1150-1158.  doi: 10.1007/s00376-017-6283-3

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2003
Manuscript revised: 10 July 2003
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Validation of Sea Level Data in the East Asian Marginal Seas:Comparison between TOPEX/POSEIDON Altimeter and In-Situ Tide Gauges

  • 1. Meteorological Research Institute/Korea Meteorological Administration, Seoul, Korea,Research Institute of Oceanography, Seoul National University, Seoul, Korea,Department of Earth Sciences, Sejong University, Seoul, Korea,Laboratoire d'Oceanographie Physique, Museum National d'Histoire Naturelle, Paris,Department of Earth Sciences, Sejong University, Seoul, Korea

Abstract: In an effort to assess the reliability of satellite altimeter systems, the authors conduct a comparativeanalysis of sea level data that were collected from the TOPEX/POSEIDON (T/P) altimeter and 10 tidegauges (TG) near the satellite passing ground tracks. The analysis is made using datasets collected frommarginal sea regions surrounding the Korean Peninsula at T/P cycles of 2 to 230, which correspond toOctober 1992 to December 1998. Proper treatment of tidal errors is a very critical step in data processingbecause the study area has very strong tide. When the T/P data are processed, the procedures of Parkand Gamberoni (1995) are adapted to reduce errors associated with the tide. When the T/P data areprocessed in this way, the alias periods of M2, S2, and K1 constituents are found to be 62.1, 58.7, and 173days repectively. The compatibility of the T/P and TG datasets are examined at various filtering periods.The results indicate that the low-frequency signals of the T/P data can be interpreted more safely withlonger filtering periods (such as up to the maximum selected value of 200 days). When RMS errors forthe 200-day low-pass filter period are compared with all 10 tidal stations, the values span the range of2.8 to 6.7 cm. The results of a correlation analysis for this filtering period also show a strong agreementbetween the T/P and TG datasets across all stations investigated (e.g., p-values consistently less than0.001 ). Hence according to the analysis, the conclusion is made that the analysis of surface sea level usingsatellite altimeter data can be made safely with reasonably extended filtering periods such as 200 days.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return