Advanced Search
Article Contents

Primary Reasoning behind the Double ITCZ Phenomenon in a Coupled Ocean-Atmosphere General Circulation Model


doi: 10.1007/BF02915588

  • This paper investigates the processes behind the double ITCZ phenomenon, a common problem in Coupled ocean-atmosphere General Circulation Models (CGCMs), using a CGCM-FGCM-0 (Flexible General Circulation Model, version 0). The double ITCZ mode develops rapidly during the first two years of the integration and becomes a perennial phenomenon afterwards in the model. By way of Singular Value Decomposition (SVD) for SST, sea surface pressure, and sea surface wind, some air-sea interactions are analyzed. These interactions prompt the anomalous signals that appear at the beginning of the coupling to develop rapidly. There are two possible reasons, proved by sensitivity experiments: (1) the overestimated east-west gradient of SST in the equatorial Pacific in the ocean spin-up process, and (2) the underestimated amount of low-level stratus over the Peruvian coast in CCM3 (the Community Climate Model, Version Three). The overestimated east-west gradient of SST brings the anomalous equatorial easterly. The anomalous easterly, affected by the Coriolis force in the Southern Hemisphere, turns into an anomalous westerly in a broad area south of the equator and is enhanced by atmospheric anomalous circulation due to the underestimated amount of low-level stratus over the Peruvian coast simulated by CCM3. The anomalous westerly leads to anomalous warm advection that makes the SST warm in the southeast Pacific.The double ITCZ phenomenon in the CGCM is a result of a series of nonlocal and nonlinear adjustment processes in the coupled system, which can be traced to the uncoupled models, oceanic component, and atmospheric component. The zonal gradient of the equatorial SST is too large in the ocean component and the amount of low-level stratus over the Peruvian coast is too low in the atmosphere component.
  • [1] DING Yihui, SHI Xueli, LIU Yiming, LIU Yan, LI Qingquan, QIAN Yongfu, MIAO Manqian, ZHAI Guoqing, GAO Kun, 2006: Multi-year Simulations and Experimental Seasonal Predictions for Rainy Seasons in China by Using a Nested Regional Climate Model (RegCM NCC). Part I: Sensitivity Study, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 323-341.  doi: 10.1007/s00376-006-0487-2
    [2] Wu Guoxiong, Liu Hui, Zhao Yucheng, Li Weiping, 1996: A Nine-layer Atmospheric General Circulation Model and Its Performance, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 1-18.  doi: 10.1007/BF02657024
    [3] WANG Zhi, GAO Kun, 2003: Sensitivity Experiments of an Eastward-Moving Southwest Vortex to Initial Perturbations, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 638-649.  doi: 10.1007/BF02915507
    [4] WANG Zhi, GAO Kun, 2006: Adjoint Sensitivity Experiments of a Meso- -scale Vortex in the Middle Reaches of the Yangtze River, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 267-281.  doi: 10.1007/s00376-006-0267-z
    [5] Yu Yongqiang, Yu Rucong, Zhang Xuehong, Liu Hailong, 2002: A Flexible Coupled Ocean-Atmosphere General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 169-190.  doi: 10.1007/s00376-002-0042-8
    [6] YU Yongqiang, ZHANG Xuehong, GUO Yufu, 2004: Global Coupled Ocean-Atmosphere General Circulation Models in LASG/IAP, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 444-455.  doi: 10.1007/BF02915571
    [7] Zhou Guangqing, Zeng Qingcun, 2001: Predictions of ENSO with a Coupled Atmosphere-Ocean General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 587-603.  doi: 10.1007/s00376-001-0047-8
    [8] Zhang Ronghua, Zeng Qingcun, Zhou Guangqing, Liang Xinzhong, 1995: A Coupled General Circulation Model for the Tropical Pacific Ocean and Global Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 127-142.  doi: 10.1007/BF02656827
    [9] Liu Shikuo, He Anguo, 1991: A Simple Quasi-Geostrophic Coupled Ocean-Atmosphere Model, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 257-271.  doi: 10.1007/BF02919608
    [10] Yu Yongqiang, Guo Yufu, 1995: The Interannual Variability of Climate in a Coupled Ocean-Atmosphere Model, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 273-288.  doi: 10.1007/BF02656977
    [11] Wu Aiming, Ni Yunqi, 1999: A Hybrid Coupled Ocean-Atmosphere Model and ENSO Prediction Study, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 405-418.  doi: 10.1007/s00376-999-0019-y
    [12] Liu Hui, Jin Xiangze, Zhang Xuehong, Wu Guoxiong, 1996: A Coupling Experiment of an Atmosphere and an Ocean Model with a Monthly Anomaly Exchange Schem, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 133-146.  doi: 10.1007/BF02656857
    [13] Boyin HUANG, ZHU Jiang, YANG Haijun, 2014: Mechanisms of Atlantic Meridional Overturning Circulation (AMOC) Variability in a Coupled Ocean-Atmosphere GCM, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 241-251.  doi: 10.1007/s00376-013-3021-3
    [14] LIU Zhengyu, WU Shu, ZHANG Shaoqing, LIU Yun, RONG Xinyao, , 2013: Ensemble Data Assimilation in a Simple Coupled Climate Model: The Role of Ocean-Atmosphere Interaction, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1235-1248.  doi: 10.1007/s00376-013-2268-z
    [15] ZHANG Rong-Hua, 2015: A Hybrid Coupled Model for the Pacific Ocean-Atmosphere System. Part I: Description and Basic Performance, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 301-318.  doi: 10.1007/s00376-014-3266-5
    [16] Junya HU, Rong-Hua ZHANG, Chuan GAO, 2019: A Hybrid Coupled Ocean-Atmosphere Model and Its Simulation of ENSO and Atmospheric Responses, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 643-657.  doi: 10.1007/s00376-019-8197-8
    [17] LIU Qinyu, WEN Na, YU Yongqiang, 2006: The Role of the Kuroshio in the Winter North Pacific Ocean-Atmosphere Interaction: Comparison of a Coupled Model and Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 181-189.  doi: 10.1007/s00376-006-0181-4
    [18] Chao Jiping, WangXiaoxi, Chen Yingyi, Wang Lizhi, 1986: MONTHLY AND SEASONAL NUMERICAL FORECASTS BY USING THE ANOMALY OCEAN-ATMOSPHERE COUPLED FILTERED MODEL, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 139-149.  doi: 10.1007/BF02682548
    [19] Ji Liren, S.Tibaldi, 1984: NUMERICAL EXPERIMENT ON THE SEASONAL TRANSITION OF GENERAL CIRCULATION OVER ASIA - PART Ⅰ, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 128-149.  doi: 10.1007/BF03187624
    [20] BUHE Cholaw, Ulrich CUBASCH, LIN Yonghui, JI Liren, 2003: The Change of North China Climate in Transient Simulations Using the IPCC SRES A2 and B2 Scenarios with a Coupled Atmosphere-Ocean General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 755-766.  doi: 10.1007/BF02915400

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2004
Manuscript revised: 10 November 2004
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Primary Reasoning behind the Double ITCZ Phenomenon in a Coupled Ocean-Atmosphere General Circulation Model

  • 1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing ,100029;National Climate Center,Beijing,100081,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing ,100029,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing ,100029,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing ,100029;Beijing Institute of Applied Meteorology, Beijing,100029

Abstract: This paper investigates the processes behind the double ITCZ phenomenon, a common problem in Coupled ocean-atmosphere General Circulation Models (CGCMs), using a CGCM-FGCM-0 (Flexible General Circulation Model, version 0). The double ITCZ mode develops rapidly during the first two years of the integration and becomes a perennial phenomenon afterwards in the model. By way of Singular Value Decomposition (SVD) for SST, sea surface pressure, and sea surface wind, some air-sea interactions are analyzed. These interactions prompt the anomalous signals that appear at the beginning of the coupling to develop rapidly. There are two possible reasons, proved by sensitivity experiments: (1) the overestimated east-west gradient of SST in the equatorial Pacific in the ocean spin-up process, and (2) the underestimated amount of low-level stratus over the Peruvian coast in CCM3 (the Community Climate Model, Version Three). The overestimated east-west gradient of SST brings the anomalous equatorial easterly. The anomalous easterly, affected by the Coriolis force in the Southern Hemisphere, turns into an anomalous westerly in a broad area south of the equator and is enhanced by atmospheric anomalous circulation due to the underestimated amount of low-level stratus over the Peruvian coast simulated by CCM3. The anomalous westerly leads to anomalous warm advection that makes the SST warm in the southeast Pacific.The double ITCZ phenomenon in the CGCM is a result of a series of nonlocal and nonlinear adjustment processes in the coupled system, which can be traced to the uncoupled models, oceanic component, and atmospheric component. The zonal gradient of the equatorial SST is too large in the ocean component and the amount of low-level stratus over the Peruvian coast is too low in the atmosphere component.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return