Advanced Search
Article Contents

A Miniature Robotic Plane Meteorological Sounding System


doi: 10.1007/BF02915591

  • This article presents a miniature robotic plane meteorological sounding system RPMSS), which consists of three major subsystems: a miniature robotic plane, an air-borne meteorological sounding and flight control system, and a ground-based system. Take-off and landing of the miniature aircraft are guided by radio control, and the flight of the robotic plane along a pre-designed trajectory is automatically piloted by an onboard navigation system. The observed meteorological data as well as all flight information are sent back in real time to the ground, then displayed and recorded by the ground-based computer. The ground-based subsystem can also transmit instructions to the air-borne control subsystem. Good system performance has been demonstrated by more than 300 hours of flight for atmospheric sounding.
  • [1] Eun-Han KWON, Jinlong LI, B. J. SOHN, Elisabeth WEISZ, 2012: Use of Total Precipitable Water Classification of A Priori Error and Quality Control in Atmospheric Temperature and Water Vapor Sounding Retrieval, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 263-273.  doi: 10.1007/s00376-011-1119-z
    [2] YAO Zhigang, Jun LI, Jinlong LI, 2012: Sunglint Impact on Atmospheric Soundings from Hyperspectral Resolution Infrared Radiances, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 455-463.  doi: 10.1007/s00376-011-1013-8
    [3] Sibo ZHANG, Li GUAN, 2017: Preliminary Study on Direct Assimilation of Cloud-affected Satellite Microwave Brightness Temperatures, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 199-208.  doi: 10.1007/s00376-016-6043-9
    [4] Xuefen ZHANG, Liangxu LI, Rongkang YANG, Ran GUO, Xia SUN, Jianping LUO, Hongbin CHEN, Daxin LIU, Kebing TANG, Wenwu PENG, Xiaodong HAN, Qiyun GUO, Xiaoxia LI, Xikun FEI, 2021: Comprehensive Marine Observing Experiment Based on High-Altitude Large Unmanned Aerial Vehicle (South China Sea Experiment 2020 of the “Petrel Project”), ADVANCES IN ATMOSPHERIC SCIENCES, 38, 531-537.  doi: 10.1007/s00376-020-0314-1
    [5] Hongbin CHEN, Jun LI, Yuejian XUAN, Xiaosong HUANG, Weifeng ZHU, Keping ZHU, Wenzheng SHAO, 2019: First Rocketsonde Launched from an Unmanned Semi-submersible Vehicle, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 339-345.  doi: 10.1007/s00376-018-8249-5
    [6] Xiao Jingwei, Lu Naiping, Zhou Mingyu, 1985: APPLICATION OF SODAR SOUNDING TO ATMOSPHERIC DISPERSION-MIXING DEPTH AND CONCENTRATION AT THE GROUND, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 63-71.  doi: 10.1007/BF03179738
    [7] Hongbin CHEN, Jun LI, Wenying HE, Shuqing MA, Yingzhi WEI, Jidong PAN, Yu ZHAO, Xuefen ZHANG, Shuzhen HU, 2021: IAP’s Solar-Powered Unmanned Surface Vehicle Actively Passes through the Center of typhoon Sinlaku (2020), ADVANCES IN ATMOSPHERIC SCIENCES, 38, 538-545.  doi: 10.1007/s00376-021-1006-1
    [8] Young-Chan NOH, Byung-Ju SOHN, Yoonjae KIM, Sangwon JOO, William BELL, Roger SAUNDERS, 2017: A New Infrared Atmospheric Sounding Interferometer Channel Selection and Assessment of Its Impact on Met Office NWP Forecasts, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1265-1281.  doi: 10.1007/s00376-017-6299-8
    [9] Yang HE, Xiaoqian ZHU, Zheng SHENG, Wei GE, Xiaoran ZHAO, Mingyuan HE, 2022: Atmospheric Disturbance Characteristics in the Lower-middle Stratosphere Inferred from Observations by the Round-Trip Intelligent Sounding System (RTISS) in China, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 131-144.  doi: 10.1007/s00376-021-1110-2
    [10] T. S. Spassova, 1992: A Theoretical Test of the Geostrophic Momentum Approximation, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 251-255.  doi: 10.1007/BF02657516
    [11] Zhang Daomin, Sheng Hua, Ji Liren, 1990: Development and Test of Hydrostatic Extraction Scheme in Spectral Model, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 142-153.  doi: 10.1007/BF02919152
    [12] Zhang Daomin, Li Jinlong, Ji Liren, Huang Boyin, Wu Wanli, Chen Jiabin, Song Zhengshan, 1995: A Global Spectral Model and Test of Its Performance, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 67-78.  doi: 10.1007/BF02661288
    [13] Federico OTERO, Diego C. ARANEO, 2022: Forecasting Zonda Wind Occurrence with Vertical Sounding Data, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 161-177.  doi: 10.1007/s00376-021-1007-0
    [14] JIANG Yuan, LIU Liping, 2014: A Test Pattern Identification Algorithm and Its Application to CINRAD/SA(B) Data, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 331-343.  doi: 10.1007/s00376-013-2315-9
    [15] Chen Jiabin, Ji Liren, Wu Wanli, 1987: DESIGN AND TEST OF AN IMPROVED SCHEME FOR GLOBAL SPECTRAL MODEL WITH REDUCED TRUNCATION ERROR, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 156-168.  doi: 10.1007/BF02677062
    [16] Jun LI, Wei HAN, 2017: A Step Forward toward Effectively Using Hyperspectral IR Sounding Information in NWP, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1263-1264.  doi: 10.1007/s00376-017-7167-2
    [17] WANG Hanjie, SHI Weilai, CHEN Xiaohong, 2006: The Statistical Significance Test of Regional Climate Change Caused by Land Use and Land Cover Variation in West China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 355-364.  doi: 10.1007/s00376-006-0355-0
    [18] SHENG Chunyan, Ming XUE, GAO Shouting, 2009: The Structure and Evolution of Sea Breezes During the Qingdao Olympics Sailing Test Event in 2006, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 132-142.  doi: 10.1007/s00376-009-0132-y
    [19] Xue Jishan, Wang Kangling, Wang Zhiming, Huang Minqiang, Zhang Xuehong, Yuan Chongguang, 1988: TEST OF A TROPICAL LIMITED AREA NUMERICAL PREDIC-TION MODEL INCLUDING EFFECT OF REAL TOPOGRAPHY, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 1-14.  doi: 10.1007/BF02657341
    [20] CAO Jie, Qin XU, 2011: Computing Streamfunction and Velocity Potential in a Limited Domain of Arbitrary Shape. Part II: Numerical Methods and Test Experiments, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1445-1458.  doi: 10.1007/s00376-011-0186-5

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2004
Manuscript revised: 10 November 2004
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Miniature Robotic Plane Meteorological Sounding System

  • 1. Atmospheric Observation Experimental Base, China Meteorological Administration, Beijing,100796,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing,100029,Institute of Meteorology Sciences, Meteorology Bureau of Jiangxi Province, Nanchang,330046,Institute of Meteorology Sciences, Meteorology Bureau of Jiangxi Province, Nanchang,330046,Institute of Meteorology Sciences, Meteorology Bureau of Jiangxi Province, Nanchang,330046

Abstract: This article presents a miniature robotic plane meteorological sounding system RPMSS), which consists of three major subsystems: a miniature robotic plane, an air-borne meteorological sounding and flight control system, and a ground-based system. Take-off and landing of the miniature aircraft are guided by radio control, and the flight of the robotic plane along a pre-designed trajectory is automatically piloted by an onboard navigation system. The observed meteorological data as well as all flight information are sent back in real time to the ground, then displayed and recorded by the ground-based computer. The ground-based subsystem can also transmit instructions to the air-borne control subsystem. Good system performance has been demonstrated by more than 300 hours of flight for atmospheric sounding.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return