Advanced Search
Article Contents

Connections between Surface Sensible Heat Net Flux and Regional Summer Precipitation over China


doi: 10.1007/BF02915592

  • Using the observed monthly precipitation and NCEP (National Centers for Environmental Prediction)reanalysis surface flux data from 1951-2000, the connections between the seasonal SSHNF (Surface Sensible Heat Net Flux) over the Asian continent and the regional summer precipitation of China were examined.The patterns of collective and individual correlations were identified. The results indicate that the response of the regional summer precipitation of China to the seasonal SSHNF over the study area varies according to region and season. The interannual variability of summer precipitation anomalies over Xinjiang, the northernmost Northeast China, and the North China Plain are most sensitive to the anomaly of the seasonal SSHNF. There are significant collective correlations between the interannual anomalies of the seasonal SSHNF and summer precipitation over these regions. In contrast, the Southeast Tibetan Plateau,Huaihe River Valley, and surrounding areas exhibit the least significant correlation. Significant individual correlations exist between the summer precipitation over the southernmost Northeast China, East Inner Mongolia, South of the Yangtze River and South China and the seasonal SSHNF in certain seasons over the following areas: near Lake Baikal and Lake Balkhash, near Da Hinggan Mountains and Xiao Hinggan Mountains, as well as the Tibetan Plateau.
  • [1] Haoxin ZHANG, Weiping LI, Weijing LI, 2019: Influence of Late Springtime Surface Sensible Heat Flux Anomalies over the Tibetan and Iranian Plateaus on the Location of the South Asian High in Early Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 93-103.  doi: 10.1007/s00376-018-7296-2
    [2] Yizhe HAN, Dabang JIANG, Dong SI, Yaoming MA, Weiqiang MA, 2024: Time-lagged Effects of the Spring Atmospheric Heat Source over the Tibetan Plateau on Summer Precipitation in Northeast China during 1961–2020: Role of Soil Moisture, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-2363-8
    [3] ZHANG Jingyong, DONG Wenjie, FU Congbin, WU Lingyun, 2003: The Influence of Vegetation Cover on Summer Precipitation in China: a Statistical Analysis of NDVI and Climate Data, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 1002-1006.  doi: 10.1007/BF02915523
    [4] WANG Zhifu, QIAN Yongfu, 2009: The Relationship of Land-Ocean Thermal Anomaly Difference with Mei-yu and South China Sea Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 169-179.  doi: 10.1007/s00376-009-0169-y
    [5] HAN Bo, ZHAO Cailing, LÜ Shihua, WANG Xin, 2015: A Diagnostic Analysis on the Effect of the Residual Layer in Convective Boundary Layer Development near Mongolia Using 20th Century Reanalysis Data, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 807-820.  doi: 10.1007/s00376-014-4164-6
    [6] MA Jiehua, WANG Huijun, FAN Ke, 2015: Dynamic Downscaling of Summer Precipitation Prediction over China in 1998 Using WRF and CCSM4, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 577-584.  doi: 10.1007/s00376-014-4143-y
    [7] Junhu ZHAO, Liu YANG, Bohui GU, Jie YANG, Guolin FENG, 2016: On the Relationship between the Winter Eurasian Teleconnection Pattern and the Following Summer Precipitation over China, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 743-752.  doi: 10.1007/s00376-015-5195-3
    [8] LI Weiping, XUE Yongkang, 2005: Numerical Simulation of the Impact of Vegetation Index on the Interannual Variation of Summer Precipitation in the Yellow River Basin, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 865-876.  doi: 10.1007/BF02918686
    [9] ZHAO Tianbao, FU Congbin, 2006: Comparison of Products from ERA-40, NCEP-2, and CRU with Station Data for Summer Precipitation over China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 593-604.  doi: 10.1007/s00376-006-0593-1
    [10] Jun WANG, Jinming FENG, Qizhong WU, Zhongwei YAN, 2016: Impact of Anthropogenic Aerosols on Summer Precipitation in the Beijing-Tianjin-Hebei Urban Agglomeration in China: Regional Climate Modeling Using WRF-Chem, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 753-766.  doi: 10.1007/s00376-015-5103-x
    [11] Wushan YING, Huiping YAN, Jing-Jia LUO, 2022: Seasonal Predictions of Summer Precipitation in the Middle-lower Reaches of the Yangtze River with Global and Regional Models Based on NUIST-CFS1.0, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1561-1578.  doi: 10.1007/s00376-022-1389-7
    [12] Chujie GAO, Gen LI, 2023: Enhanced Seasonal Predictability of Spring Soil Moisture over the Indo-China Peninsula for Eastern China Summer Precipitation under Non-ENSO Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1632-1648.  doi: 10.1007/s00376-023-2361-x
    [13] GAO Rong, WEI Zhigang, DONG Wenjie, ZHONG Hailing, 2005: Impact of the Anomalous Thawing in the Tibetan Plateau on Summer Precipitation in China and Its Mechanism, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 238-245.  doi: 10.1007/BF02918513
    [14] CHEN Huopo, SUN Jianqi, 2009: How the “Best” Models Project the Future Precipitation Change in China, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 773-782.  doi: 10.1007/s00376-009-8211-7
    [15] Jun ZOU, Jianning SUN, Aijun DING, Minghuai WANG, Weidong GUO, Congbin FU, 2017: Observation-based Estimation of Aerosol-induced Reduction of Planetary Boundary Layer Height, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1057-1068.  doi: 10.1007/s00376-016-6259-8
    [16] ZHOU Lian-Tong, HUANG Ronghui, 2010: An Assessment of the Quality of Surface Sensible Heat Flux Derived from Reanalysis Data through Comparison with Station Observations in Northwest China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 500-512.  doi: 10.1007/s00376-009-9081-8
    [17] PAN Naixian, LI Chengcai, 2008: Deduction of the Sensible Heat Flux from SODAR Data, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 253-266.  doi: 10.1007/s00376-008-0253-8
    [18] GAO Zhiqiu, BIAN Lingen, WANG Jinxing, LU Longhua, 2003: Discussion on Calculation Methods of Sensible Heat Flux during GAME/Tibet in 1998, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 357-368.  doi: 10.1007/BF02690794
    [19] PENG Guliang, CAI Xuhui, ZHANG Hongsheng, LI Aiguo, HU Fei, Monique Y. LECLERC, 2008: Heat Flux Apportionment to Heterogeneous Surfaces\\[.1cm] Using Flux Footprint Analysis, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 107-116.  doi: 10.1007/s00376-008-0107-4
    [20] Qian yongfu, Wang Qianqian, 2000: Numerical Simulations of Anomalies of Precipitation and Surface Air Temperature in China in the Summer of 1997, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 221-233.  doi: 10.1007/s00376-000-0005-x

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2004
Manuscript revised: 10 November 2004
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Connections between Surface Sensible Heat Net Flux and Regional Summer Precipitation over China

  • 1. Department of Earth Sciences, Zhejiang University, Hangzhou,310028

Abstract: Using the observed monthly precipitation and NCEP (National Centers for Environmental Prediction)reanalysis surface flux data from 1951-2000, the connections between the seasonal SSHNF (Surface Sensible Heat Net Flux) over the Asian continent and the regional summer precipitation of China were examined.The patterns of collective and individual correlations were identified. The results indicate that the response of the regional summer precipitation of China to the seasonal SSHNF over the study area varies according to region and season. The interannual variability of summer precipitation anomalies over Xinjiang, the northernmost Northeast China, and the North China Plain are most sensitive to the anomaly of the seasonal SSHNF. There are significant collective correlations between the interannual anomalies of the seasonal SSHNF and summer precipitation over these regions. In contrast, the Southeast Tibetan Plateau,Huaihe River Valley, and surrounding areas exhibit the least significant correlation. Significant individual correlations exist between the summer precipitation over the southernmost Northeast China, East Inner Mongolia, South of the Yangtze River and South China and the seasonal SSHNF in certain seasons over the following areas: near Lake Baikal and Lake Balkhash, near Da Hinggan Mountains and Xiao Hinggan Mountains, as well as the Tibetan Plateau.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return