Advanced Search
Article Contents

The Characteristics of Climate Change over the Tibetan Plateau in the Last 40 Years and the Detection of Climatic Jumps


doi: 10.1007/BF02915705

  • Through analyzing the yearly average data obtained from 123 regular meteorological observatories located in the Tibetan Plateau (T-P), this article studies the characteristics of climate change in T-P in the last 40 years. From the distribution of the linear trend, it can be concluded that the southeastern part of T-P becomes warmer and wetter, with an obvious increase of rainfall. The same characteristics arc found in the southwestern part of T-P, but the shift is smaller. In the middle of T-P, temperature and humidity obviously increase with the center of the increase in Bangoin-Amdo. The south of the Tarim Basin also exhibits the same tendency. The reason for this area being humid is that it gets less sunshine and milder wind. The northeastern part of T-P turns warmer and drier. Qaidam Basin and its western and southern areas are the center of this shift, in which the living environment is deteriorating. Analyzing the characteristics of the regional average time series, it can be found that in the mid-1970s, a significant sudden change occurred to annual rainfall, yearly average snow-accumulation days and surface pressure in the eastern part of T-P. In the mid-1980s, another evident climatic jump happened to yearly average temperature, total cloud amount, surface pressure, relative humidity, and sunshine duration in the same area. That is, in the mid 1980s, the plateau experienced a climatic jump that is featured by the increase of temperature, snow-accumulation days, relative humidity, surface pressure, and by the decrease of sunshine duration and total cloud amount. The sudden climatic change of temperature in T-P is later than that of the global-mean temperature. From this paper it can be seen that in the middle of the 1980s, a climatic jump from warm-dry to warm-wet occurred in T-P.
  • [1] Huang Jiayou, 2000: The Response of Climatic Jump in Summer in North China to Global Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 184-192.  doi: 10.1007/s00376-000-0002-0
    [2] LIU Ge, WU Renguang, ZHANG Yuanzhi, and NAN Sulan, 2014: The Summer Snow Cover Anomaly over the Tibetan Plateau and Its Association with Simultaneous Precipitation over the Mei-yu-Baiu region, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 755-764.  doi: 10.1007/s00376-013-3183-z
    [3] Xiaojuan ZHANG, Fei ZHENG, Jiang ZHU, Xingrong CHEN, 2022: Observed Frequent Occurrences of Marine Heatwaves in Most Ocean Regions during the Last Two Decades, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1579-1587.  doi: 10.1007/s00376-022-1291-3
    [4] WEI Ke, CHEN Wen, HUANG Ronghui, 2006: Long-Term Changes of the Ultraviolet Radiation in China and its Relationship with Total Ozone and Precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 700-710.  doi: 10.1007/s00376-006-0700-3
    [5] DUAN Anmin, WU Guoxiong, LIU Yimin, MA Yaoming, ZHAO Ping, 2012: Weather and Climate Effects of the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 978-992.  doi: 10.1007/s00376-012-1220-y
    [6] Shuo JIA, Jiefan YANG, Hengchi LEI, 2024: Case Studies of the Microphysical and Kinematic Structure of Summer Mesoscale Precipitation Clouds over the Eastern Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 97-114.  doi: 10.1007/s00376-023-2303-7
    [7] WANG Chenghai, SHI Hongxia, HU Haolin, WANG Yi, XI Baike, 2015: Properties of Cloud and Precipitation over the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1504-1516.  doi: 10.1007/s00376-015-4254-0
    [8] LIU Yimin, BAO Qing, DUAN Anmin, QIAN Zheng'an, WU Guoxiong, 2007: Recent Progress in the Impact of the Tibetan Plateau on Climate in China, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 1060-1076.  doi: 10.1007/s00376-007-1060-3
    [9] Li Guo ping, Lu Jinghua, Jin Bingling, Bu Nima, 2001: The Effects of Anomalous Snow Cover of the Tibetan Plateau on the Surface Heating, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1207-1214.  doi: 10.1007/s00376-001-0034-0
    [10] WANG Leidi, LÜ Daren, HE Qing, 2015: The Impact of Surface Properties on Downward Surface Shortwave Radiation over the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 759-771.  doi: 10.1007/s00376-014-4131-2
    [11] Yahao WU, Liping LIU, 2017: Statistical Characteristics of Raindrop Size Distribution in the Tibetan Plateau and Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 727-736.  doi: 10.1007/s00376-016-5235-7
    [12] Kequan ZHANG, Jiakang DUAN, Siyi ZHAO, Jiankai ZHANG, James KEEBLE, Hongwen LIU, 2022: Evaluating the Ozone Valley over the Tibetan Plateau in CMIP6 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1167-1183.  doi: 10.1007/s00376-021-0442-2
    [13] YOU Wei, ZANG Zengliang, PAN Xiaobin, ZHANG Lifeng, LI Yi, 2015: Statistical Analysis of Thunderstorms on the Eastern Tibetan Plateau Based on Modified Thunderstorm Indices, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 515-527.  doi: 10.1007/s00376-014-4039-x
    [14] Yilun CHEN, Aoqi ZHANG, Yunfei FU, Shumin CHEN, Weibiao LI, 2021: Morphological Characteristics of Precipitation Areas over the Tibetan Plateau Measured by TRMM PR, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 677-689.  doi: 10.1007/s00376-020-0233-1
    [15] YANG Kun, Toshio KOIKE, 2008: Satellite Monitoring of the Surface Water and Energy Budget in the Central Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 974-985.  doi: 10.1007/s00376-008-0974-8
    [16] LI Ying, HU Zeyong, 2009: A Study on Parameterization of Surface Albedo over Grassland Surface in the Northern Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 161-168.  doi: 10.1007/s00376-009-0161-6
    [17] BIAN Jianchun, 2009: Features of Ozone Mini-Hole Events over the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 305-311.  doi: 10.1007/s00376-009-0305-8
    [18] ZHU Weijun, Yongsheng ZHANG, 2009: Summertime Atmospheric Teleconnection Pattern Associated with a Warming over the Eastern Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 413-422.  doi: 10.1007/s00376-009-0413-5
    [19] Wu Aiming, Ni Yunqi, 1997: The Influence of Tibetan Plateau on the Interannual Variability of Atmospheric Circulation over Tropical Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 69-80.  doi: 10.1007/s00376-997-0045-6
    [20] Jiang Hao, Wang Keli, 2001: Analysis of the Surface Temperature on the Tibetan Plateau from Satellite, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1215-1223.  doi: 10.1007/s00376-001-0035-z

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2004
Manuscript revised: 10 March 2004
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Characteristics of Climate Change over the Tibetan Plateau in the Last 40 Years and the Detection of Climatic Jumps

  • 1. Chinese Academy of Meteorological Sciences,Beijing 100081;State Key Laboratory of Numerical Modeling for Atmospherics Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,Chinese Academy of Meteorological Sciences,Beijing 100081,National Meteorological Center, Beijing 100081

Abstract: Through analyzing the yearly average data obtained from 123 regular meteorological observatories located in the Tibetan Plateau (T-P), this article studies the characteristics of climate change in T-P in the last 40 years. From the distribution of the linear trend, it can be concluded that the southeastern part of T-P becomes warmer and wetter, with an obvious increase of rainfall. The same characteristics arc found in the southwestern part of T-P, but the shift is smaller. In the middle of T-P, temperature and humidity obviously increase with the center of the increase in Bangoin-Amdo. The south of the Tarim Basin also exhibits the same tendency. The reason for this area being humid is that it gets less sunshine and milder wind. The northeastern part of T-P turns warmer and drier. Qaidam Basin and its western and southern areas are the center of this shift, in which the living environment is deteriorating. Analyzing the characteristics of the regional average time series, it can be found that in the mid-1970s, a significant sudden change occurred to annual rainfall, yearly average snow-accumulation days and surface pressure in the eastern part of T-P. In the mid-1980s, another evident climatic jump happened to yearly average temperature, total cloud amount, surface pressure, relative humidity, and sunshine duration in the same area. That is, in the mid 1980s, the plateau experienced a climatic jump that is featured by the increase of temperature, snow-accumulation days, relative humidity, surface pressure, and by the decrease of sunshine duration and total cloud amount. The sudden climatic change of temperature in T-P is later than that of the global-mean temperature. From this paper it can be seen that in the middle of the 1980s, a climatic jump from warm-dry to warm-wet occurred in T-P.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return