Advanced Search
Article Contents

Intercomparison of Nox,SO2,O3,and Aromatic Hydrocarbons Measured by a Commercial DOAS System and Traditional Point Monitoring Techniques


doi: 10.1007/BF02915707

  • A field-based intercomparison study of a commercial Differential Optical Absorption Spectroscopy (DOAS) instrument (OPSIS AB, Sweden) and different point-sample monitoring techniques (PM, based on an air monitoring station, an air monitoring vehicle, and various chemical methods) was conducted in Beijing from October 1999 to January 2000. The mixing ratios of six trace gases including NO, NO2, SO2,O3, benzene, and toluene were monitored continuously during the four months. A good agreement between the DOAS and PM data was found for NO2 and SO2. However, the concentrations of benzene, toluene,and NO obtained by DOAS were significantly lower than those measured by the point monitors. The ozone levels monitored by the DOAS were generally higher than those measured by point monitors. These results may be attributed to a strong vertical gradient of the NO-O3-NO2 system and of the aromatics at the measurement site. Since the exact data evaluation algorithm is not revealed by the manufacturer of the DOAS system, the error in the DOAS analysis can also not be excluded.
  • [1] Ning ZHANG, Yunsong DU, Shiguang MIAO, 2016: A Microscale Model for Air Pollutant Dispersion Simulation in Urban Areas: Presentation of the Model and Performance over a Single Building, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 184-192.  doi: 10.1007/s00376-015-5152-1
    [2] Yiran GUO, Jie CAO, Hui LI, Jian WANG, Yuchao DING, 2016: Simulation of the Interface between the Indian Summer Monsoon and the East Asian Summer Monsoon: Intercomparison between MPI-ESM and ECHAM5/MPI-OM, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 294-308.  doi: 10.1007/s00376-015-5073-z
    [3] SI Fuqi, LIU Jianguo, XIE Pinghua, ZHANG Yujun, LIU Wenqing, Hiroaki KUZE, Nofel LAGROSAS, Nobuo TAKEUCHI, 2006: Correlation Study Between Suspended Particulate Matter and DOAS Data, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 461-467.  doi: 10.1007/s00376-006-0461-z
    [4] Huanhuan ZHU, Zhihong JIANG, Juan LI, Wei LI, Cenxiao SUN, Laurent LI, 2020: Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China?, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1119-1132.  doi: 10.1007/s00376-020-9289-1
    [5] Paxson K. Y. CHEUNG, Wen ZHOU, Dongxiao WANG, Marco Y. T. LEUNG, 2022: Dissimilarity among Ocean Reanalyses in Equatorial Pacific Upper-Ocean Heat Content and Its Relationship with ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 67-79.  doi: 10.1007/s00376-021-1109-8
    [6] LI Suwen, LIU Wenqing, XIE Pinhua, LI Ang, QIN Min, DOU Ke, 2007: Measurements of Nighttime Nitrate Radical Concentrations in the Atmosphere by Long-Path Differential Optical Absorption Spectroscopy, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 875-880.  doi: 10.1007/s00376-007-0875-2
    [7] P.C.S. Devara, P. Ernest Raj, 1992: Atmospheric NO2 Concentration Measurements Using Differential Absorption Lidar Technique, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 73-82.  doi: 10.1007/BF02656932
    [8] HUO Yanfeng, DUAN Minzheng, TIAN Wenshou, MIN Qilong, 2015: A Differential Optical Absorption Spectroscopy Method for X CO2 Retrieval from Ground-Based Fourier Transform Spectrometers Measurements of the Direct Solar Beam, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1119-1128.  doi: 10.1007/s00376-015-4213-9
    [9] Alexey V. ELISEEV, Igor I. MOKHOV, Konstantin G. RUBINSTEIN, Maria S. GUSEVA, 2004: Atmospheric and Coupled Model Intercomparison in Terms of Amplitude-Phase Characteristics of Surface Air Temperature Annual Cycle, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 837-847.  doi: 10.1007/BF02915586
    [10] QIU Jinhuan, YANG Jingmei, 2008: Absorption Properties of Urban/Suburban Aerosols in China, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 1-10.  doi: 10.1007/s00376-008-0001-0
    [11] Mei ZHENG, Tianle ZHANG, Yaxin XIANG, Xiao TANG, Yinan Wang, Guannan GENG, Yuying WANG, Yingjun LIU, Chunxiang YE, Caiqing YAN, Yingjun CHEN, Jiang ZHU, Qiang ZHANG, Tong ZHU, 2024: A Newly Established Air Pollution Data Center in China, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-4055-4
    [12] Pengfei LIN, Zhipeng YU, Hailong LIU, Yongqiang YU, Yiwen LI, Jirong JIANG, Wei XUE, Kangjun CHEN, Qian YANG, Bowen ZHAO, Jilin WEI, Mengrong DING, Zhikuo SUN, Yaqi WANG, Yao MENG, Weipeng ZHENG, Jinfeng MA, 2020: LICOM Model Datasets for the CMIP6 Ocean Model Intercomparison Project, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 239-249.  doi: 10.1007/s00376-019-9208-5
    [13] LIN Zhongda, 2014: Intercomparison of the Impacts of Four Summer Teleconnections over Eurasia on East Asian Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1366-1376.  doi: 10.1007/s00376-014-3171-y
    [14] ZENG Qingcun, 2007: An Intercomparison of Rules for Testing the Significance of Coupled Modes of Singular Value Decomposition Analysis, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 199-212.  doi: 10.1007/s00376-007-0199-2
    [15] Hao LUO, Yong HAN, Chunsong LU, Jun YANG, Yonghua WU, 2019: Characteristics of Surface Solar Radiation under Different Air Pollution Conditions over Nanjing, China: Observation and Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1047-1059.  doi: 10.1007/s00376-019-9010-4
    [16] Jianguo Niu, Hiroaki Kuze, Nobuo Takeuchi, 2000: Studying Air Pollution with Kitt Peak Solar Flux Atlas-Analysis Method and Results of Observation, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 363-374.  doi: 10.1007/s00376-000-0029-2
    [17] Xia LI, Keming ZHAO, Shiyuan ZHONG, Xiaojing YU, Zhimin FENG, Yuting ZHONG, Ayitken MAULEN, Shuting LI, 2023: Evolution of Meteorological Conditions during a Heavy Air Pollution Event under the Influence of Shallow Foehn in Urumqi, China, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 29-43.  doi: 10.1007/s00376-022-1422-x
    [18] Tong ZHU, Mingjin TANG, Meng GAO, Xinhui BI, Junji CAO, Huizheng CHE, Jianmin CHEN, Aijun DING, Pingqing FU, Jian GAO, Yang GAO, Maofa GE, Xinlei GE, Zhiwei HAN, Hong HE, Ru-Jin HUANG, Xin HUANG, Hong LIAO, Cheng LIU, Huan LIU, Jianguo LIU, Shaw Chen LIU, Keding LU, Qingxin MA, Wei NIE, Min SHAO, Yu SONG, Yele SUN, Xiao TANG, Tao WANG, Tijian WANG, Weigang WANG, Xuemei WANG, Zifa WANG, Yan YIN, Qiang ZHANG, Weijun ZHANG, Yanlin ZHANG, Yunhong ZHANG, Yu ZHAO, Mei ZHENG, Bin ZHU, Jiang ZHU, 2023: Recent Progress in Atmospheric Chemistry Research in China: Establishing a Theoretical Framework for the “Air Pollution Complex”, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1339-1361.  doi: 10.1007/s00376-023-2379-0
    [19] ZHOU Li, XU Xiangde, DING Guoan, ZHOU Mingyu, CHENG Xinghong, 2005: Diurnal Variations of Air Pollution and Atmospheric Boundary Layer Structure in Beijing During Winter 2000/2001, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 126-132.  doi: 10.1007/BF02930876
    [20] Yuan WANG, 2015: Air Pollution or Global Warming: Attribution of Extreme Precipitation Changes in Eastern China——Comments on "Trends of Extreme Precipitation in Eastern China and Their Possible Causes", ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1444-1446.  doi: 10.1007/s00376-015-5109-4

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2004
Manuscript revised: 10 March 2004
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Intercomparison of Nox,SO2,O3,and Aromatic Hydrocarbons Measured by a Commercial DOAS System and Traditional Point Monitoring Techniques

  • 1. Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031,Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031,China National Environmental Monitoring Center, Beijing 100029,China National Environmental Monitoring Center, Beijing 100029,Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031,Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031

Abstract: A field-based intercomparison study of a commercial Differential Optical Absorption Spectroscopy (DOAS) instrument (OPSIS AB, Sweden) and different point-sample monitoring techniques (PM, based on an air monitoring station, an air monitoring vehicle, and various chemical methods) was conducted in Beijing from October 1999 to January 2000. The mixing ratios of six trace gases including NO, NO2, SO2,O3, benzene, and toluene were monitored continuously during the four months. A good agreement between the DOAS and PM data was found for NO2 and SO2. However, the concentrations of benzene, toluene,and NO obtained by DOAS were significantly lower than those measured by the point monitors. The ozone levels monitored by the DOAS were generally higher than those measured by point monitors. These results may be attributed to a strong vertical gradient of the NO-O3-NO2 system and of the aromatics at the measurement site. Since the exact data evaluation algorithm is not revealed by the manufacturer of the DOAS system, the error in the DOAS analysis can also not be excluded.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return