Advanced Search
Article Contents

Using a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to Simulate the Interaction between Land Surface Processes and Atmospheric Boundary Layer in Semi-Arid Regions


doi: 10.1007/BF02915711

  • This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts:atmospheric boundary layer processes and land surface processes. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feasibility of the model is well proved in this paper. The numerical simulation results from MSPAS show good agreement with reality. The scheme is used to obtain reasonable simulations for diurnal variations of heat balance, potential temperature of boundary layer, and wind field, and spatial distributions of temperature, specific humidity, vertical velocity,turbulence kinetic energy, and turbulence exchange coefficient over desert and oasis. In addition, MSPAS is used to simulate the interaction between desert and oasis at night, and again it obtains reasonable results.This indicates that MSPAS can be used to study the interaction between land surface processes and the atmospheric boundary layer over various underlying surfaces and can be extended for regional climate and numerical weather prediction study.
  • [1] LIU Shuhua, YUE Xu, LIU Huizhi, HU Fei, 2004: Using a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to Study the Sensitivity of Land Surface and Boundary Layer Processes to Soil and Vegetation Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 717-729.  doi: 10.1007/BF02916369
    [2] ZHOU Li, XU Xiangde, DING Guoan, ZHOU Mingyu, CHENG Xinghong, 2005: Diurnal Variations of Air Pollution and Atmospheric Boundary Layer Structure in Beijing During Winter 2000/2001, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 126-132.  doi: 10.1007/BF02930876
    [3] Hu Yinqiao, 2002: Application of Linear Thermodynamics to the Atmospheric System.Part Ⅱ: Exemplification of Linear Phenomenological Relations in the Atmospheric System, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 767-776.  doi: 10.1007/s00376-002-0043-7
    [4] CHEN Jinbei, HU Yinqiao, ZHANG Lei, 2007: Principle of Cross Coupling Between Vertical Heat Turbulent Transport and Vertical Velocity and Determination of Cross Coupling Coefficient, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 89-100.  doi: 10.1007/s00376-007-0089-7
    [5] Zexu Luo, Xiaoquan Song, Jiaping Yin, Zhichao Bu, Yubao Chen, Yongtao Yu, Zhenlu Zhang, 2024: Comparison and Verification of Coherent Doppler Wind Lidar and Radiosonde in Beijing Urban Area, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3240-9
    [6] MA Yaoming, Massimo MENENTI, Reinder FEDDES, 2010: Parameterization of Heat Fluxes at Heterogeneous Surfaces by Integrating Satellite Measurements with Surface Layer and Atmospheric Boundary Layer Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 328-336.  doi: 10.1007/s00376-009-9024-4
    [7] Yun Qian, Hailong Wang, Chuanfeng Zhao, Chun Zhao, Siyu Chen, Xiao-Ming Hu, Shichang Kang, 2022: Understanding Third Pole Atmospheric Dynamics and Land Surface Processes and Their Associations with the Cryosphere, Air Quality, and Climate Change, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1017-1020.  doi: 10.1007/s00376-022-2004-7
    [8] Zhu Cuijuan, Li Xingsheng, Ye Zhuojia, 1984: AN ANALYSIS OF THE STRUCTURE OF THUNDERSTORM IN THE ATMOSPHERIC BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 105-118.  doi: 10.1007/BF03187621
    [9] Zhao Bolin, Zhen Jinming, Hu Chengda, Du Jinlin, Zhu Yuanjing, Zhang Chengxiang, 1992: Study on Clouds and Marine Atmospheric Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 383-396.  doi: 10.1007/BF02677072
    [10] Li Xin, Hu Fei, Pu Yifen, M.H.Al-Jiboori, Hu Zhaoxia, Hong Zhongxiang, 2002: Identification of Coherent Structures of Turbulence at the Atmospheric Surface Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 687-698.  doi: 10.1007/s00376-002-0008-x
    [11] Liu Shida, Liu Shikuo, Xin Guojun, Liang Fuming, 1994: The Theoretical Model of Atmospheric Turbulence Spectrum in Surface Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 408-414.  doi: 10.1007/BF02658160
    [12] Zhu Jiang, Wang Hui, Masafumi Kamachi, 2002: The Improvement Made by a Modified TLM in 4DVAR with a Geophysical Boundary Layer Model, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 563-582.  doi: 10.1007/s00376-002-0001-4
    [13] Li Xin, Hu Fei, Liu Gang, Hong Zhongxiang, 2001: Multi-scale Fractal Characteristics of Atmospheric Boundary-Layer Turbulence, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 787-792.
    [14] HU Yinqiao, ZUO Hongchao, 2003: The Influence of Convergence Movement on Turbulent Transportation in the Atmospheric Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 794-798.  doi: 10.1007/BF02915404
    [15] You Ronggao, Hong Zhongxiang, Lu Weixiu, Zhao Deshan, Kong Qinxin, Zhu Wenqin, 1985: VARIATIONS OF ATMOSPHERIC AEROSOL CONCENTRATION AND SIZE DISTRIBUTION WITH TIME AND ALTITUDE IN THE BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 243-250.  doi: 10.1007/BF03179756
    [16] Liu Shikuo, Huang Wei, Rong Pingping, 1992: Effects of Turbulent Dispersion of Atmospheric Balance Motions of Planetary Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 147-156.  doi: 10.1007/BF02657505
    [17] LIU Ximing, CHENG Xueling, WU Qiong, FU Minning, ZENG Qingcun, 2013: Some Characteristics of the Surface Boundary Layer of a Strong Cold Air Process over Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 210-218.  doi: 10.1007/s00376-012-1223-8
    [18] Zhong Shiyuan, Zhou Mingyu, Li Xingsheng, 1987: A NUMERICAL STUDY ON THE MESO-SCALE POLLUTANT DISPERSION OVER A SLOPED SURFACE IN THE STABLE BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 300-312.  doi: 10.1007/BF02663600
    [19] Bo HAN, Shihua LÜ, Ruiqing LI, Xin WANG, Lin ZHAO, Cailing ZHAO, Danyun WANG, Xianhong MENG, 2017: Global Land Surface Climate Analysis Based on the Calculation of a Modified Bowen Ratio, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 663-678.  doi: 10.1007/s00376-016-6175-y
    [20] DAI Qiudan, SUN Shufen, 2007: A Comparison of Two Canopy Radiative Models in Land Surface ProcessesA Comparison of Two Canopy adiative Models in Land Surface Processes, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 421-434.  doi: 10.1007/s00376-007-0421-2

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2004
Manuscript revised: 10 March 2004
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Using a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to Simulate the Interaction between Land Surface Processes and Atmospheric Boundary Layer in Semi-Arid Regions

  • 1. Group of Atmosphere Boundary Layer and Turbulence, Laboratory of Severe Storm Research,Department of Atmospheric Sciences, the College of Physics, Peking University, Beijing 100871;State Key Laboratory of Atmospheric Physics and Chemistry, Institute of At,Group of Atmosphere Boundary Layer and Turbulence, Laboratory of Severe Storm Research,Department of Atmospheric Sciences, the College of Physics, Peking University, Beijing 100871,State Key Laboratory of Atmospheric Physics and Chemistry, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,State Key Laboratory of Atmospheric Physics and Chemistry, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029

Abstract: This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts:atmospheric boundary layer processes and land surface processes. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feasibility of the model is well proved in this paper. The numerical simulation results from MSPAS show good agreement with reality. The scheme is used to obtain reasonable simulations for diurnal variations of heat balance, potential temperature of boundary layer, and wind field, and spatial distributions of temperature, specific humidity, vertical velocity,turbulence kinetic energy, and turbulence exchange coefficient over desert and oasis. In addition, MSPAS is used to simulate the interaction between desert and oasis at night, and again it obtains reasonable results.This indicates that MSPAS can be used to study the interaction between land surface processes and the atmospheric boundary layer over various underlying surfaces and can be extended for regional climate and numerical weather prediction study.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return